Prof. Dr. Roger A. Sauer
Ruhr University Bochum
Institute for Structural Mechanics
IC / 6 / 185
Universitätsstraße 150
44801 Bochum

Email: roger.sauer@rub.de
Tel: 0234 / 32-29051

download vCard



Berufliche Laufbahn


Seit 04/2024 W3-Professor für Statik und Dynamik an der Ruhr-Universität Bochum
Seit 10/2020 Professor für Strukturmechanik an der Technischen Universität Danzig
10/2019 – 09/2020 Gastprofessor an der UC Berkeley, IIT Kanpur und Technischen Universität Danzig
07/2019 – 12/2023 Assoziierter Forschungsgruppenleiter an der Graduiertenschule AICES, RWTH Aachen
07/2014 – 06/2019 W2-Professor für Kontaktmechanik an der RWTH Aachen
01/2010 – 06/2019 Forschungsgruppenleiter an der Graduiertenschule AICES der RWTH Aachen
04/2007 – 12/2009 Post-Doktorand und Junior-Forschungsgruppenleiter am Institut für Kontinuumsmechanik an der Leibniz Universität Hannover
08/2002 – 12/2006 Master- und Doktorstudium an der University of California, Berkeley, USA
10/1996 – 04/2002 Studium im Bauingenieurwesen an der Universität Karlsruhe (jetzt KIT), Deutschland


Lectures


  • Advanced Finite Element Methods
  • Angewandte Finite-Elemente-Methoden
  • Applied Finite Element Methods
  • Computational Modeling of Membranes and Shells
  • FEM for Nonlinear Analyses of Inelastic Materials and Structures
  • Finite Element Method for Nonlinear Analysis of Inelastic Materials and Structures
  • Finite Element Methods in Linear Computational Dynamics
  • Finite Element Methods in Linear Structural Mechanics
  • Finite Elemente Methoden für nichtlineare Strukturanalysen
  • Linear Finite Element Methods
  • Lineare Finite-Elemente-Methoden
  • Object-oriented Modelling and Implementation of Structural Analysis Software
  • Objektorientierte Modellierung und Programmierung der Finite-Elemente-Methode
  • Recent Advances in Numerical Modelling and Simulation
  • Statik und Tragwerkslehre A

Publications

2024
[ 1 ]A. Borković; M.H. Gfrerer; R.A. Sauer; B. Marussig; T.Q. Bui
A novel section–section potential for short-range interactions between plane beams
Computer Methods in Applied Mechanics and Engineering, 2024-09
DOI ]
[ 2 ]Aningi Mokhalingam; Shakti S. Gupta; Roger A. Sauer
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
Physical Review B, 2024-01-29
DOI ]
[ 3 ]Roger A. Sauer; Zhihui Zou; Thomas J.R. Hughes
A simple and efficient hybrid discretization approach to alleviate membrane locking in isogeometric thin shells
Computer Methods in Applied Mechanics and Engineering, 2024-05
DOI ]
2023
[ 4 ]Maziyar Bazmara; Roger A Sauer; Ashutosh Agrawal
Biomimetic torene shells
Mathematics and Mechanics of Solids, 2023-08
DOI ]
[ 5 ]Myung-Jin Choi; Roger A. Sauer; Sven Klinkel
A selectively reduced degree basis for efficient mixed nonlinear isogeometric beam formulations with extensible directors
Computer Methods in Applied Mechanics and Engineering, 2023-12
DOI ]
[ 6 ]Myung-Jin Choi; Sven Klinkel; Roger A. Sauer
An isogeometric frictionless beam‐to‐beam contact formulation for hyperelastic Cosserat rods with unconstrained directors
RWTH Aachen University, 2023
DOI ]
[ 7 ]Maximilian Harmel; Roger A. Sauer
New hybrid quadrature schemes for weakly singular kernels applied to isogeometric boundary elements for 3D Stokes flow
Engineering Analysis with Boundary Elements, 2023-08
DOI ]
[ 8 ]Thang X Duong; Vu N Khiêm; Mikhail Itskov; Roger A Sauer
A general theory for anisotropic Kirchhoff–Love shells with in-plane bending of embedded fibers
Mathematics and Mechanics of Solids, 2023-05
DOI ]
[ 9 ]Saipraneeth Gouravaraju; Jyotindra Narayan; Roger A. Sauer; Sachin Singh Gautam
A Bayesian regularization-backpropagation neural network model for peeling computations
The Journal of Adhesion, 2023-01-02
DOI ]  [ arXiv ]
[ 10 ]Katharina Immel; Vu-Hieu Nguyen; Guillaume Haïat; Roger A. Sauer
Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction
Biomechanics and Modeling in Mechanobiology, 2023-02
DOI ]  [ arXiv ]
[ 11 ]Eshwar J. Savitha; Roger A. Sauer
A new anisotropic bending model for nonlinear shells: Comparison with existing models and isogeometric finite element implementation
International Journal of Solids and Structures, 2023-04
DOI ]  [ arXiv ]
2022
[ 12 ]Paul, K.; Sauer, R.A.
An isogeometric finite element formulation for boundary and shell viscoelasticity based on a multiplicative surface deformation split
arXiv, 2022
DOI ]
[ 13 ]Choi, M.-J.; Klinkel, S.; Sauer, R.A.
An isogeometric finite element formulation for frictionless contact of Cosserat rods with unconstrained directors
arXiv, 2022
DOI ]
[ 14 ]Philipp Quenzel; Hauke Kröger; Boris Manin; Khiêm Ngoc Vu; Thang Xuan Duong; Thomas Gries; Mikhail Itskov; Roger A. Sauer
Material characterisation of biaxial glass-fibre non-crimp fabrics as a function of ply orientation, stitch pattern, stitch length and stitch tension
Journal of Composite Materials, 2022-11
DOI ]
[ 15 ]Roger A. Sauer; Thang X. Duong; Kranthi K. Mandadapu
A chemo-mechano-thermodynamical contact theory for adhesion, friction, and (de)bonding reactions
Mathematics and Mechanics of Solids, 2022-04
DOI ]
[ 16 ]Thang X. Duong; Mikhail Itskov; Roger A. Sauer
A general isogeometric finite element formulation for rotation‐free shells with in‐plane bending of embedded fibers
International Journal for Numerical Methods in Engineering, 2022-07-30
DOI ]
[ 17 ]Karsten Paul; Roger A. Sauer
An isogeometric finite element formulation for boundary and shell viscoelasticity based on a multiplicative surface deformation split
International Journal for Numerical Methods in Engineering, 2022-11-30
DOI ]  [ arXiv ]
[ 18 ]Zou, Z.; Hughes, T.J.R.; Scott, M.A.; Miao, D.; Sauer, R.A.
Efficient and robust quadratures for isogeometric analysis: Reduced Gauss and Gauss–Greville rules
Computer Methods in Applied Mechanics and Engineering, 2022
DOI ]
[ 19 ]Choi, M.-J.; Klinkel, S.; Sauer, R.A.
An isogeometric finite element formulation for frictionless contact of Cosserat rods with unconstrained directors
Computational Mechanics, 2022
DOI ]
[ 20 ]Bartosz Borzeszkowski; Izabela Lubowiecka; Roger A. Sauer
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
Computer Methods in Applied Mechanics and Engineering, 2022-02
DOI ]  [ arXiv ]
[ 21 ]Harmel, M.; Sauer, R.A.
New hybrid quadrature schemes for weakly singular kernels applied to isogeometric boundary elements for 3D Stokes flow
arXiv, 2022
DOI ]
2021
[ 22 ]Mergel, J.C.; Scheibert, J.; Sauer, R.A.
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
Journal of the Mechanics and Physics of Solids, 2021
DOI ]  [ arXiv ]
[ 23 ]Duong, T.X.; Itskov, M.; Sauer, R.A.
A general isogeometric finite element formulation for rotation-free shells with embedded fibers and in-plane bending
arXiv, 2021
DOI ]
[ 24 ]Gouravaraju, S.; Sauer, R.A.; Gautam, S.S.
Investigating the normal and tangential peeling behaviour of gecko spatulae using a coupled adhesion-friction model
Journal of Adhesion, 2021
DOI ]
[ 25 ]Borzeszkowski, B.; Duong, T.X.; Sauer, R.A.; Lubowiecka, I.
Isogeometric Shell Analysis of the Human Abdominal Wall
Advances in Intelligent Systems and Computing, 2021
DOI ]
[ 26 ]Borzeszkowski, B.; Lubowiecka, I.; Sauer, R.A.
Nonlinear material identification of heterogeneous isogeometric Kirchhoff-Love shells
arXiv, 2021
DOI ]
[ 27 ]Z. Zou; T.J.R. Hughes; M.A. Scott; R.A. Sauer; E.J. Savitha
Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements
Computer Methods in Applied Mechanics and Engineering, 2021-07
DOI ]
[ 28 ]Katharina Immel; Vu-Hieu Nguyen; Arnaud Dubory; Charles-Henri Flouzat–Lachaniette; Roger A. Sauer; Guillaume Haïat
Determinants of the primary stability of cementless acetabular cup implants: A 3D finite element study
Computers in Biology and Medicine, 2021-08
DOI ]
[ 29 ]Myung-Jin Choi; Roger A. Sauer; Sven Klinkel
An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors
Computer Methods in Applied Mechanics and Engineering, 2021-11
DOI ]  [ arXiv ]
[ 30 ]Gouravaraju, S.; Sauer, R.A.; Gautam, S.S.
On the presence of a critical detachment angle in gecko spatula peeling - a numerical investigation using an adhesive friction model
Journal of Adhesion, 2021
DOI ]
[ 31 ]Kumar, P.; Sauer, R.A.; Saxena, A.
On topology optimization of large deformation contact-aided shape morphing compliant mechanisms
Mechanism and Machine Theory, 2021
DOI ]  [ arXiv ]
2020
[ 32 ]Karsten Paul; Christopher Zimmermann; Kranthi K. Mandadapu; Thomas J. R. Hughes; Chad M. Landis; Roger A. Sauer
An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS
Computational Mechanics, 2020-04-21
DOI ]  [ arXiv ]
[ 33 ]Amaresh Sahu; Yannick A.D. Omar; Roger A. Sauer; Kranthi K. Mandadapu
Arbitrary Lagrangian–Eulerian finite element method for curved and deforming surfaces
Journal of Computational Physics, 2020-04
DOI ]  [ arXiv ]
[ 34 ]Katharina Immel; Thang X. Duong; Vu-Hieu Nguyen; Guillaume Haïat; Roger A. Sauer
A modified Coulomb’s law for the tangential debonding of osseointegrated implants
Biomechanics and Modeling in Mechanobiology, 2020-06-08
DOI ]  [ arXiv ]
[ 35 ]Karsten Paul; Christopher Zimmermann; Thang X. Duong; Roger A. Sauer
Isogeometric continuity constraints for multi-patch shells governed by fourth-order deformation and phase field models
Computer Methods in Applied Mechanics and Engineering, 2020-10
DOI ]  [ arXiv ]
[ 36 ]Paul, K.; Zimmermann, C.; Duong, T.X.; Sauer, R.A.
Isogeometric continuity constraints for multi-patch shells governed by fourth-order deformation and phase field models
arXiv, 2020
DOI ]
[ 37 ]Gouravaraju, S.; Sauer, R.A.; Gautam, S.S.
On the presence of a critical detachment angle in gecko spatula peeling - A numerical investigation using an adhesive friction model
arXiv, 2020
DOI ]
[ 38 ]Kumar, P.; Sauer, R.A.; Saxena, A.
On topology optimization of large deformation contact-aided shape morphing compliant mechanisms
arXiv, 2020
DOI ]
[ 39 ]Mergel, J.C.; Scheibert, J.; Sauer, R.A.
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
arXiv, 2020
DOI ]
[ 40 ]Omar, Y.A.D.; Sahu, A.; Sauer, R.A.; Mandadapu, K.K.
Nonaxisymmetric Shapes of Biological Membranes from Locally Induced Curvature
Biophysical Journal, 2020
DOI ]
[ 41 ]Mokhalingam, A.; Ghaffari, R.; Sauer, R.A.; Gupta, S.S.
Comparing quantum, molecular and continuum models for graphene at large deformations
Carbon, 2020
DOI ]  [ arXiv ]
[ 42 ]Duong, T.X.; Khiêm, V.N.; Itskov, M.; Sauer, R.A.
A general theory for anisotropic Kirchhoff-Love shells with embedded fibers and in-plane bending
arXiv, 2020
DOI ]
[ 43 ]Ghaffari, R.; Sauer, R.A.
A nonlinear thermomechanical formulation for anisotropic volume and surface continua
Mathematics and Mechanics of Solids, 2020
DOI ]
[ 44 ]Choia, M.-J.; Sauer, R.A.; Klinkel, S.
An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors
arXiv, 2020
DOI ]
[ 45 ]Gouravaraju, S.; Narayan, J.; Sauer, R.A.; Gautam, S.S.
A Bayesian regularization-backpropagation neural network model for peeling computations
arXiv, 2020
DOI ]
[ 46 ]Sauer, R.A.; Duong, T.X.; Mandadapu, K.K.
A chemo-mechano-thermodynamical contact theory for adhesion, friction and (de)bonding reactions
arXiv, 2020
DOI ]
2019
[ 47 ]Gouravaraju, S.; Sauer, R.A.; Gautam, S.S.
Investigating the normal and tangential peeling behaviour of gecko spatulae using a coupled adhesion-friction model
arXiv, 2019
DOI ]
[ 48 ]Kumar, P.; Saxena, A.; Sauer, R.A.
Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact
Journal of Mechanical Design, Transactions of the ASME, 2019
DOI ]  [ arXiv ]
[ 49 ]Mokhalingam, A.; Ghaffari, R.; Sauer, R.A.; Gupta, S.S.
Comparing quantum, molecular and continuum models for graphene at large deformations
arXiv, 2019
DOI ]
[ 50 ]Giovanni Della Puppa; Roger A. Sauer; Martin Trautz
A Unified Representation of Folded Surfaces via Fourier Series
Nexus Network Journal, 2019-12
DOI ]
[ 51 ]Roger A. Sauer; Reza Ghaffari; Anurag Gupta
The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity
International Journal of Solids and Structures, 2019-11
DOI ]  [ arXiv ]
[ 52 ]Paul, K.; Zimmermann, C.; Mandadapu, K.K.; Hughes, T.J.R.; Landis, C.M.; Sauer, R.A.
An adaptive space-time phase field formulation for dynamic fracture of brittle shells based on LR NURBS
arXiv, 2019
DOI ]
[ 53 ]Christopher Zimmermann; Deepesh Toshniwal; Chad M. Landis; Thomas J.R. Hughes; Kranthi K. Mandadapu; Roger A. Sauer
An isogeometric finite element formulation for phase transitions on deforming surfaces
Computer Methods in Applied Mechanics and Engineering, 2019-07
DOI ]  [ arXiv ]
[ 54 ]Reza Ghaffari; Farzad Shirazian; Ming Hu; Roger A. Sauer
A nonlinear hyperelasticity model for single layer blue phosphorus based on ab initio calculations
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019-09-27
DOI ]
[ 55 ]Janine C. Mergel; Riad Sahli; Julien Scheibert; Roger A. Sauer
Continuum contact models for coupled adhesion and friction
The Journal of Adhesion, 2019-10-15
DOI ]  [ arXiv ]
[ 56 ]Duong, T.X.; De Lorenzis, L.; Sauer, R.A.
A segmentation-free isogeometric extended mortar contact method
Computational Mechanics, 2019
DOI ]  [ arXiv ]
[ 57 ]Omar, Y.A.D.; Sahu, A.; Sauer, R.A.; Mandadapu, K.K.
Non-axisymmetric shapes of biological membranes from locally induced curvature
bioRxiv, 2019
DOI ]
[ 58 ]Vu-Bac, N.; Duong, T.X.; Lahmer, T.; Areias, P.; Sauer, R.A.; Park, H.S.; Rabczuk, T.
A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells
Computer Methods in Applied Mechanics and Engineering, 2019
DOI ]
[ 59 ]Duong, T.X.; Sauer, R.A.
A concise frictional contact formulation based on surface potentials and isogeometric discretization
Computational Mechanics, 2019
DOI ]
[ 60 ]Vu-Bac, N.; Duong, T.X.; Lahmer, T.; Zhuang, X.; Sauer, R.A.; Park, H.S.; Rabczuk, T.
A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures
arXiv, 2019
DOI ]
[ 61 ]Immel, K.; Duong, T.X.; Nguyen, V.-H.; Haïat, G.; Sauer, R.A.
A modified Coulomb’s law for the tangential debonding of osseointegrated implants
arXiv, 2019
DOI ]
[ 62 ]Ghaffari, R.; Shirazian, F.; Hu, M.; Sauer, R.A.
A nonlinear hyperelasticity model for single layer blue phosphorus based on ab-initio calculations
arXiv, 2019
DOI ]
[ 63 ]Roohbakhshan, F.; Sauer, R.A.
A finite membrane element formulation for surfactants
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019
DOI ]  [ arXiv ]
2018
[ 64 ]Mergel, J.C.; Sahli, R.; Scheibert, J.; Sauer, R.A.
Continuum contact models for coupled adhesion and friction
arXiv, 2018
DOI ]
[ 65 ]Duong, T.X.; Sauer, R.A.
A concise frictional contact formulation based on surface potentials and isogeometric discretization
arXiv, 2018
DOI ]
[ 66 ]Roohbakhshan, F.; Sauer, R.A.
A finite membrane element formulation for surfactants
arXiv, 2018
DOI ]
[ 67 ]Ghaffari, R.; Sauer, R.A.
A new efcient hyperelastic fnite element model for graphene and its application to carbon nanotubes and nanocones
arXiv, 2018
DOI ]
[ 68 ]Sahu, A.; Omar, Y.A.D.; Sauer, R.A.; Mandadapu, K.K.
Arbitrary Lagrangian–Eulerian finite element method for curved and deforming surfaces I. General theory and application to fluid interfaces
arXiv, 2018
DOI ]
[ 69 ]Kumar, P.; Saxen, A.; Sauer, R.A.
Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact
arXiv, 2018
DOI ]
[ 70 ]Sauer, R.A.
On the computational modeling of lipid bilayers using thin-shell theory
CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018
DOI ]  [ PDF ]
[ 71 ]Ghaffari, R.; Sauer, R.A.
Modal analysis of graphene-based structures for large deformations, contact and material nonlinearities
Journal of Sound and Vibration, 2018
DOI ]  [ arXiv ]
[ 72 ]Roohbakhshan, F.; Duong, T.X.; Sauer, R.A.
Isogeometric kirchhoff-love shells: Numerics, constitution and biomechanical applications
Shell Structures: Theory and Applications Volume 4 - Proceedings of the 11th International Conference on Shell Structures: Theory and Applications, SSTA 2017, 2018
DOI ]
[ 73 ]Sauer, R.A.; Ghaffari, R.; Gupta, A.
The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity
arXiv, 2018
DOI ]
[ 74 ]Roger A. Sauer; Tobias Luginsland
A monolithic fluid–structure interaction formulation for solid and liquid membranes including free-surface contact
Computer Methods in Applied Mechanics and Engineering, 2018-11
DOI ]  [ arXiv ]
[ 75 ]Reza Ghaffari; Thang X. Duong; Roger A. Sauer
A new shell formulation for graphene structures based on existing ab-initio data
International Journal of Solids and Structures, 2018-03
DOI ]  [ arXiv ]
[ 76 ]N. Vu-Bac; T.X. Duong; T. Lahmer; X. Zhuang; R.A. Sauer; H.S. Park; T. Rabczuk
A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures
Computer Methods in Applied Mechanics and Engineering, 2018-04
DOI ]
[ 77 ]Reza Ghaffari; Roger A. Sauer
A new efficient hyperelastic finite element model for graphene and its application to carbon nanotubes and nanocones
Finite Elements in Analysis and Design, 2018-07
DOI ]  [ arXiv ]
2017
[ 78 ]Zimmermann, C.; Sauer, R.A.
Adaptive local surface refinement based on LR NURBS and its application to contact
Computational Mechanics, 2017
DOI ]  [ arXiv ]
[ 79 ]Zimmermann, C.; Toshniwal, D.; Landis, C.M.; Hughes, T.J.R.; Mandadapu, K.K.; Sauer, R.A.
An isogeometric finite element formulation for phase transitions on deforming surfaces
arXiv, 2017
DOI ]
[ 80 ]Zimmermann, C.; Sauer, R.A.
Adaptive local surface refinement based on LR NURBS and its application to contact
arXiv, 2017
DOI ]
[ 81 ]Rasool, R.; Harmel, M.; Sauer, R.A.
A strategy to interface isogeometric analysis with Lagrangian finite elements - Application to uid-structure interaction problems
arXiv, 2017
DOI ]
[ 82 ]Duong, T.X.; de Lorenzis, L.; Sauer, R.A.
A segmentation-free isogeometric extended mortar contact method
arXiv, 2017
DOI ]
[ 83 ]Sauer, R.A.; Duong, T.X.; Mandadapu, K.K.; Steigmann, D.J.
A stabilized finite element formulation for liquid shells and its application to lipid bilayers
Journal of Computational Physics, 2017
DOI ]  [ arXiv ]
[ 84 ]Mergel, J.C.; Sauer, R.A.; Ober-Blöbaum, S.
C1-continuous space-time discretization based on Hamilton's law of varying action
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 2017
DOI ]
[ 85 ]Roohbakhshan, F.; Sauer, R.A.
Efficient isogeometric thin shell formulations for soft biological materials
Biomechanics and Modeling in Mechanobiology, 2017
DOI ]  [ arXiv ]
[ 86 ]Sahu, A.; Sauer, R.A.; Mandadapu, K.K.
The irreversible thermodynamics of curved lipid membranes
arXiv, 2017
DOI ]
[ 87 ]Harmel, M.; Sauer, R.A.; Bommes, D.
Volumetric mesh generation from T-spline surface representations
CAD Computer Aided Design, 2017
DOI ]
[ 88 ]Ghaffari, R.; Sauer, R.A.
Modal analysis of graphene-based structures for large deformations, contact and material nonlinearities
arXiv, 2017
DOI ]
[ 89 ]Sahu, A.; Sauer, R.A.; Mandadapu, K.K.
Irreversible thermodynamics of curved lipid membranes
Physical Review E, 2017
DOI ]
[ 90 ]Harmel, M.; Sauer, R.A.
Efficient three-dimensional simulation of fused deposition modeling by coupling finite element and boundary element analysis
Simulation for Additive Manufacturing 2017, Sinam 2017, 2017
DOI ]
[ 91 ]Kumar, P.; Saxena, A.; Sauer, R.A.
Implementation of self contact in path generating compliant mechanisms
Mechanisms and Machine Science, 2017
DOI ]
[ 92 ]Sauer, R.A.; Luginsland, T.
A monolithic uid-structure interaction formulation for solid and liquid membranes including free-surface contact
arXiv, 2017
DOI ]
[ 93 ]Luginsland, T.; Sauer, R.A.
A computational study of wetting on chemically contaminated substrates
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017
DOI ]
[ 94 ]Duong, T.X.; Roohbakhshan, F.; Sauer, R.A.
A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries
Computer Methods in Applied Mechanics and Engineering, 2017
DOI ]
2016
[ 95 ]Kumar, P.; Sauer, R.A.; Saxena, A.
Synthesis of C0 Path-Generating Contact-Aided Compliant Mechanisms Using the Material Mask Overlay Method
Journal of Mechanical Design, Transactions of the ASME, 2016
DOI ]
[ 96 ]Roger A. Sauer
A frictional sliding algorithm for liquid droplets
Computational Mechanics, 2016-12
DOI ]  [ PDF ]
[ 97 ]Sauer, R.A.
A Survey of Computational Models for Adhesion
Journal of Adhesion, 2016
DOI ]  [ PDF ]
[ 98 ]Rasool, R.; Corbett, C.J.; Sauer, R.A.
A strategy to interface isogeometric analysis with Lagrangian finite elements-Application to incompressible flow problems
Computers and Fluids, 2016
DOI ]
[ 99 ]Sauer, R.A.
A contact theory for surface tension driven systems
Mathematics and Mechanics of Solids, 2016
DOI ]
[ 100 ]Roohbakhshan, F.; Duong, T.X.; Sauer, R.A.
A projection method to extract biological membrane models from 3D material models
Journal of the Mechanical Behavior of Biomedical Materials, 2016
DOI ]
2015
[ 101 ]Schmidt, M.G.; Ismail, A.E.; Sauer, R.A.
A continuum mechanical surrogate model for atomic beam structures
International Journal for Multiscale Computational Engineering, 2015
DOI ]
[ 102 ]Corbett, C.J.; Sauer, R.A.
Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding
Computer Methods in Applied Mechanics and Engineering, 2015
DOI ]  [ PDF ]
[ 103 ]Osman, M.; Sauer, R.A.
Computational Analysis of Wetting on Hydrophobic Surfaces: Application to Self-Cleaning Mechanisms
Advances in Contact Angle, Wettability and Adhesion, 2015
DOI ]
[ 104 ]Kumar, P.; Sauer, R.A.; Saxena, A.
On synthesis of contact aided compliant mechanisms using the material mask overlay method
Proceedings of the ASME Design Engineering Technical Conference, 2015
DOI ]
[ 105 ]Muhammad Osman; Roger A. Sauer
Computational Analysis of Wetting on Hydrophobic Surfaces: Application to Self-Cleaning Mechanisms
Advances in Contact Angle, Wettability and Adhesion, 2015-09
DOI ]
[ 106 ]R. A. Sauer; T. X. Duong
On the theoretical foundations of thin solid and liquid shells
Mathematics and Mechanics of Solids, 2015-08
DOI ]
[ 107 ]Sauer, R.A.; DeLorenzis, L.
An unbiased computational contact formulation for 3D friction
International Journal for Numerical Methods in Engineering, 2015
DOI ]  [ PDF ]
[ 108 ]Raste, H.; Saxena, A.; Sauer, R.; Corves, B.
Bioinspired mechanism synthesis for flapping flight with unsteady flow effects
Mechanisms and Machine Science, 2015
DOI ]
2014
[ 109 ]Sauer, R.A.
Advances in the computational modeling of the gecko adhesion mechanism
Journal of Adhesion Science and Technology, 2014
DOI ]  [ PDF ]
[ 110 ]Sauer, R.A.; Mergel, J.C.
A geometrically exact finite beam element formulation for thin film adhesion and debonding
Finite Elements in Analysis and Design, 2014
DOI ]  [ PDF ]
[ 111 ]Sauer, R.A.; Duong, T.X.; Corbett, C.J.
A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements
Computer Methods in Applied Mechanics and Engineering, 2014
DOI ]  [ PDF ]
[ 112 ]Gautam, S.S.; Sauer, R.A.
A composite time integration scheme for dynamic adhesion and its application to gecko spatula peeling
International Journal of Computational Methods, 2014
DOI ]  [ PDF ]
[ 113 ]Thang X. Duong; Roger A. Sauer
An accurate quadrature technique for the contact boundary in 3D finite element computations
Comput Mech, 2014-11-06
DOI ]
[ 114 ]Mergel, J.C.; Sauer, R.A.; Saxena, A.
Computational optimization of adhesive microstructures based on a nonlinear beam formulation
Structural and Multidisciplinary Optimization, 2014
DOI ]
[ 115 ]Osman, M.; Sauer, R.A.
A parametric study of the hydrophobicity of rough surfaces based on finite element computations
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014
DOI ]
[ 116 ]Sauer, R.A.
Stabilized finite element formulations for liquid membranes and their application to droplet contact
International Journal for Numerical Methods in Fluids, 2014
DOI ]
[ 117 ]Corbett, C.J.; Sauer, R.A.
NURBS-enriched contact finite elements
Computer Methods in Applied Mechanics and Engineering, 2014
DOI ]  [ PDF ]
[ 118 ]Mergel, J.C.; Sauer, R.A.
On the optimum shape of thin adhesive strips for various peeling directions
Journal of Adhesion, 2014
DOI ]
[ 119 ]Schmidt, M.G.; Sauer, R.A.; Ismail, A.E.
Multiscale treatment of mechanical contact problems involving thin polymeric layers
Modelling and Simulation in Materials Science and Engineering, 2014
DOI ]
2013
[ 120 ]Sauer, R.A.; De Lorenzis, L.
A computational contact formulation based on surface potentials
Computer Methods in Applied Mechanics and Engineering, 2013
DOI ]
[ 121 ]Sauer, R.A.
Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme
Computational Mechanics, 2013
DOI ]  [ PDF ]
[ 122 ]Raheel Rasool; Muhammad Osman; Roger A. Sauer
Computational Modeling of Liquid Droplets Moving on Rough Surfaces
Proc. Appl. Math. Mech., 2013-11
DOI ]
[ 123 ]Saxena, A.; Sauer, R.
Combined gradient-stochastic optimization with negative circular masks for large deformation topologies
International Journal for Numerical Methods in Engineering, 2013
DOI ]
[ 124 ]Gautam, S.S.; Sauer, R.A.
An energy-momentum-conserving temporal discretization scheme for adhesive contact problems
International Journal for Numerical Methods in Engineering, 2013
DOI ]  [ PDF ]
[ 125 ]Sauer, R.A.; Holl, M.
A detailed 3D finite element analysis of the peeling behaviour of a gecko spatula
Computer Methods in Biomechanics and Biomedical Engineering, 2013
DOI ]  [ PDF ]
[ 126 ]Muhammad Osman; Raheel Rasool; Roger A. Sauer
Computational Aspects of Self-Cleaning Surface Mechanisms
Advances in Contact Angle, Wettability and Adhesion, 2013-08-09
DOI ]
2012
[ 127 ]Raheel Rasool; Roger A. Sauer; Muhammad Osman
Internal Flow Analysis for Slow Moving Small Droplets in Contact with Hydrophobic Surfaces
Proc. Appl. Math. Mech., 2012
DOI ]
[ 128 ]Sauer, R.A.
Computational contact formulations for soft body adhesion
Advances in Soft Matter Mechanics, 2012
DOI ]
2011
[ 129 ]Sauer, R.A.
Challenges in computational nanoscale contact mechanics
Recent Developments and Innovative Applications in Computational Mechanics, 2011
DOI ]
[ 130 ]Sauer, R.A.
Enriched contact finite elements for stable peeling computations
International Journal for Numerical Methods in Engineering, 2011
DOI ]  [ PDF ]
[ 131 ]Sauer, R.A.
The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion
Journal of Adhesion, 2011
DOI ]  [ PDF ]
[ 132 ]Muhammad Osman; Roger A. Sauer
A Two-Dimensional Computational Droplet Contact Model
Proc. Appl. Math. Mech., 2011
DOI ]
2010
[ 133 ]Sauer, R.A.
A computational model for nanoscale adhesion between deformable solids and its application to gecko adhesion
Journal of Adhesion Science and Technology, 2010
DOI ]
[ 134 ]Muhammad Osman; Roger A. Sauer
Mechanical Modeling of Particle-Droplet Interaction Motivated by the Study of Self-Cleaning Mechanisms
Proc. Appl. Math. Mech., 2010-11
DOI ]
2009
[ 135 ]Sauer, R.A.
A finite element seta model for studying Gecko adhesion
ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2009
DOI ]
[ 136 ]Roger A. Sauer
A three-dimensional multiscale finite element model describing the adhesion of a gecko seta
Proc. Appl. Math. Mech., 2009
DOI ]
[ 137 ]Sauer, R.A.
Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta
Computer Methods in Biomechanics and Biomedical Engineering, 2009
DOI ]  [ PDF ]
[ 138 ]Roger Sauer
A computational contact model for nanoscale rubber adhesion
Constitutive Models for Rubber VI, 2009-09
DOI ]
[ 139 ]Sauer, R.A.; Wriggers, P.
Formulation and analysis of a three-dimensional finite element implementation for adhesive contact at the nanoscale
Computer Methods in Applied Mechanics and Engineering, 2009
DOI ]
2008
[ 140 ]Roger A. Sauer
An atomic interaction-based rod formulation for modelling Gecko adhesion
Proc. Appl. Math. Mech., 2008
DOI ]
[ 141 ]Sauer, R.A.; Wang, G.; Li, S.
The composite Eshelby tensors and their applications to homogenization
Acta Mechanica, 2008
DOI ]
[ 142 ]Sauer, R.A.; Li, S.
An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling
Journal of Nanoscience and Nanotechnology, 2008
DOI ]
2007
[ 143 ]Li, S.; Wang, G.; Sauer, R.A.
The eshelby tensors in a finite spherical domain - Part II: Applications to homogenization
Journal of Applied Mechanics, Transactions ASME, 2007
DOI ]
[ 144 ]Li, S.; Sauer, R.A.; Wang, G.
The eshelby tensors in a finite spherical domain - Part I: Theoretical formulations
Journal of Applied Mechanics, Transactions ASME, 2007
DOI ]
[ 145 ]Roger A. Sauer; Shaofan Li
An atomic interaction-based continuum model for computational multiscale contact mechanics
Proc. Appl. Math. Mech., 2007
DOI ]
[ 146 ]Sauer, R.A.; Li, S.
A contact mechanics model for quasi-continua
International Journal for Numerical Methods in Engineering, 2007
DOI ]
[ 147 ]Sauer, R.A.; Li, S.
An atomic interaction-based continuum model for adhesive contact mechanics
Finite Elements in Analysis and Design, 2007
DOI ]
2005
[ 148 ]Wang, G.; Li, S.; Sauer, R.
A circular inclusion in a finite domain II. The Neumann-Eshelby problem
Acta Mechanica, 2005
DOI ]
[ 149 ]Li, S.; Sauer, R.; Wang, G.
A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem
Acta Mechanica, 2005
DOI ]