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Abstract

This chapter discusses the computational modeling of lipid bilayers based on the nonlinear the-
ory of thin shells. Several computational challenges are identified and various theoretical and
computational ingredients are proposed in order to counter them. In particular, C1-continous,
NURBS-based, LBB-conforming surface finite element discretizations are discussed. The con-
stitutive behavior of the bilayer is based on in-plane viscosity and (near) area-incompressibility
combined with the Helfrich bending model. Various shear stabilization techniques are pro-
posed for quasi-static computations. All ingredients are formulated in the curvilinear coordi-
nate system characterizing general surface parametrizations. The consistent linearization of the
formulation is presented, and several numerical examples are shown.
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List of important symbols

1 identity tensor in R3

a determinant of matrix [aαβ]
A determinant of matrix [Aαβ]
aα co-variant tangent vectors of surface S at point x; α = 1, 2
Aα co-variant tangent vectors of surface S0 at point X; α = 1, 2
aα contra-variant tangent vectors of surface S at point x; α = 1, 2
Aα contra-variant tangent vectors of surface S0 at point X; α = 1, 2
aα,β parametric derivative of aα w.r.t. ξβ

aα;β co-variant derivative of aα w.r.t. ξβ

aαβ co-variant metric components of surface S at point x
Aαβ co-variant metric components of surface S0 at point X
aαβγδ derivative of aαβ w.r.t. aγδ
a class of stabilization methods based on artificial shear viscosity
A class of stabilization methods based on artificial shear stiffness
bαβ co-variant curvature tensor components of surface S at point x
Bαβ co-variant curvature tensor components of surface S0 at point X
bαβγδ derivative of bαβ w.r.t. aγδ
b curvature tensor of surface S at point x
B left surface Cauchy-Green tensor
C right surface Cauchy-Green tensor
cαβγδ derivative of ταβ w.r.t. aγδ
γ surface tension of S
Γγαβ Christoffel symbols of the second kind of surface S
dαβ co-variant components of the symmetric surface velocity gradient
D dissipation per current surface area
D0 dissipation per reference surface area
da differential surface element on S
dA differential surface element on S0

dαβγδ derivative of ταβ w.r.t. bγδ
δ... variation of ...
∆... increment of ... that is required for linearization
∆s Laplace operator on surface S
divs divergence operator on surface S
e index numbering the finite elements; e = 1, ..., nel

eαβγδ derivative of Mαβ
0 w.r.t. aγδ

ε penalty parameter
E surface Green-Lagrange strain tensor

fαβγδ derivative of Mαβ
0 w.r.t. bγδ

f ‘body’ force acting on S
f e finite element force vector of element Ωe

g expression for the area-incompressibility constraint
G expression for the weak form
Ge contribution to G from finite element Ωe

ge finite element ‘force vector’ of element Ωe due to constraint g
∇s gradient operator on surface S
H mean curvature of S at x
H0 spontaneous curvature prescribed at x
η in-plane surface viscosity
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I index numbering the finite element nodes
I1, I2 invariants of the surface Cauchy-Green tensors
i surface identity tensor on S
I surface identity tensor on S0

J area change between S0 and S
Ja area change between P and S
JA area change between P and S0

k bending modulus
kg Gaussian modulus
K initial surface bulk modulus (=area compression modulus)
Keff effective surface bulk modulus
ke finite element tangent matrix associated with f e and ge

κ Gaussian curvature of surface S at x
κ1, κ2 principal curvatures of surface S at x
LI pressure shape function of finite element node I
L interface between two NURBS patches
λ1, λ2 principal surface stretches of S at x
me number of pressure nodes of finite element Ωe

mν , mτ bending moment components acting at x ∈ ∂S
m̄ν , m̄τ prescribed bending moment components
Mαβ contra-variant bending moment components

Mαβ
0 = JMαβ

µ initial in-plane membrane shear stiffness
µeff effective in-plane membrane shear stiffness
nno total number of finite element nodes used to discretize S
nel total number of finite elements used to discretize S
nmo total number of finite element nodes used to discretize pressure q
ne number of displacement nodes of finite element Ωe

Nαβ total, contra-variant, in-plane membrane stress components
NI displacement shape function of finite element node I
n surface normal of S at x
N surface normal of S0 at X
N array of the shape functions for element Ωe

ν normal vector on ∂S
ξα convective surface coordinates; α = 1, 2
P parametric domain spanned by ξ1 and ξ2

P class of stabilization methods based on normal projection; projection matrix
ψ Helmholtz free energy per unit mass
Ψ0 Helmholtz free energy per reference area
q Lagrange multiplier associated with area-incompressibility
q array of all Lagrange multipliers qI in the system; I = 1, ..., nmo

qe array of all Lagrange multipliers qI for finite element Ωe; I = 1, ..., me

R arbitrary subregion of S
ρ surface density of S at x
ρ0 surface density of S0 at x
Sα contra-variant, out-of-plane shear stress components
S current configuration of the surface
S0 initial configuration of the surface
σ Cauchy stress tensor of the shell
σαβ stretch-related, contra-variant, in-plane stress components
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t effective traction acting on the boundary ∂S normal to ν
t̄ prescribed boundary tractions on Neumann boundary ∂tS
T traction acting on the boundary ∂S normal to ν
T α traction acting on the boundary ∂S normal to aα

ταβ = Jσαβ

V, Q admissible function spaces
ϕ deformation map of surface S
ϕ̄ prescribed boundary deformations on boundary ∂xS
w hyperelastic stored surface energy density (per current surface area)
W hyperelastic stored surface energy density (per reference surface area)
x current position of a surface point on S
X initial position of x on the reference surface S0

xI position vector of finite element node I lying on S
XI initial position of finite element node I on S0

x stacked array of all xI of the discretized surface; I = 1, ..., nno

xe stacked array of all xI for finite element Ωe; I = 1, ..., ne
Xe stacked array of all XI for finite element Ωe

0; I = 1, ..., ne
Ωe current configuration of finite element e
Ωe

0 reference configuration of finite element e

Part I: Introduction

The aim of this work is to present the computational treatment of lipid bilayers using the
framework of isogeometric finite element analysis and non-linear shell theory. The presentation
follows earlier work on membranes (Sauer et al., 2014) and shells (Sauer and Duong, 2017;
Duong et al., 2017; Sauer et al., 2017). It thus presents a condensed and combined version of
earlier work by focussing on the most important aspects that are required for the computational
description of lipid bilayers. Additionally, several new parts have been incorporated into the
presentation. Those are:

• a summary and discussion of the computational challenges

• an extension of the theory to include surface differential operators, surface contact and
surface viscosity

• the discretization and linearization of the viscosity term

• an investigation of the LBB condition for mixed shell finite elements

• a computational example on lipid bilayer indentation

The remainder of Part I gives an overview of the ingredients and challenges of the computational
modeling of lipid bilayers (Sec. 1), and surveys related literature (Sec. 2). Part II (Secs. 4–9) and
Part III (Secs. 10–13) then discuss the theoretical background and the computational modeling
in detail. Readers familiar with shell theory may directly jump to Part III and revisit relevant
sections of Part II as they are addressed. Sec. 14 concludes this work.
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1 Computational ingredients and challenges

The modeling of lipid bilayer shells is a challenging task due to a variety of reasons. Lipid
bilayers are liquid shells that are charactized by in-plane flow and out-of-plane bending elasticity
(Fig. 1a). The mechanics of such shells can lead to very complex surface shapes (Fig. 1b).

solid behavior  
out-of-plane 

liquid flow 
in-plane 

a. b.

Figure 1: Lipid bilayer deformations: a. combined solid-like and liquid-like behavior; b. complex
bud shapes (Sauer et al., 2017).

Tab. 1 gives an overview of the computational modeling challenges of lipid bilayers and lists
corresponding ingredients to deal with them. The remainder of this section provides a short

challenge ingredient Sec.

surface description curvilinear coordinates 3
liquid- & solid-like behavior in-plane flow + out-of-plane bending 4
geometric PDE’s surface balance laws 5
bilayer constitution Helfrich model + in-plane viscosity 6 & 7
non-linearity consistent linearization 8 & 10
smooth discretization NURBS-based surface finite elements 10
area-incompressibility LBB-conforming mixed methods 11
zero shear stiffness in-plane shear stabilization 12
complex surface flow surface ALE –
coupled problems coupled balance laws –
local refinement LR-B-splines, LR-NURBS –
tilt, inter-layer sliding additional degrees-of-freedom –

Table 1: Lipid bilayer modeling: computational challenges and corresponding model ingredients
(and the sections where they are addressed).

discussion on those challenges.

In order to deal with the solid- and liquid-like behavior of lipid bilayers, a very general model
formulation is required that is capable of describing the kinematics of large bending deformations
and surface flows. This requires a very general surface description that can capture large
deformations and rotations. Such a formulation is offered by curvilinear surface coordinates. It
is presented in Secs. 3 and 4. Curvilinear coordinates offer the extra advantage that they can be
used to define the finite element shape functions. In consequence this leads to a straight-forward
finite element description of the problem.

The bilayer deformation is governed by so-called geometric PDE’s. These are partial differential
equations that live on evolving surfaces. For mechanical systems, these PDE’s follow from the
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balance laws of mass and momentum. This is presented in Sec. 5.

In order to solve the PDE’s, the constitutive behavior of the bilayer has to be defined. A popular
approach is to use the elastic bending model of Helfrich (1973) and combine it with in-plane
viscosity. In general, constitution needs to be able to account for the full range of possible
deformation. Therefore, the bilayer constitution should also be described in the curvilinear
coordinate system of the evolving surface. This is presented in Secs. 6 and 7.

The PDE’s and their corresponding weak form are strongly nonlinear. In order to solve such a
system within implicit finite element methods, the consistent linearization of the formulation is
required. This is presented in Secs. 8 and 10.

Lipid bilayers are very thin structures, and it is appropriate to describe them with thin-shell
theory. Thin-shell theory leads to a high-order weak form that requires a surface description
that is at least C1-continuous. Such a formulation is provided by NURBS-based finite element
spaces. They are presented in Sec. 10.

The surface flow of lipid bilayers can be considered to be area-incompres-sible. Area-incompressibility
is a constraint that introduces new unknowns. The discretization of those needs to conform
with the discretization of the surface and its velocity according to the LBB-condition. This is
discussed in Sec. 11.

Under quasi-static conditions, the bilayer offers no resistance to shear deformations. To solve
such cases computationally, numerical shear stabilization is required. Several stabilization tech-
niques can be used, as is presented in Sec. 12.

Under dynamic conditions, viscosity offers resistance to shear flow. However, surface flow can
lead to very large surface deformations that cannot be tracked by a pure Lagrangian (i.e.
material) mesh. Also pure Eulerian (i.e. fixed) meshes cannot be used, since the surface shape
can change. Thus an arbitrary Lagrangian-Eulerian (ALE) surface formulation is required.

The mechanics of lipid bilayers may be coupled to other phenomena, such as diffusion, phase
transitions and protein binding reactions. To account for these, the surface balance laws have
to be extended by the energy and mass balance of multiple species. A recent theory for this has
been provided by Sahu et al. (2017).

The surface deformation can become very localized. For such cases local mesh refinement is
desirable. Classical NURBS don’t offer this, but there is recent work on locally refined NURBS
(Zimmermann and Sauer, 2017).

Classical thin-shell theory does not account for tilting of the lipids. Also, they don’t account for
sliding between the two lipid layers. In order to describe these aspects the kinematic description
of the bilayer deformation has to be generalized. This effectively adds degrees-of-freedom to the
formulation. Lipid tilt and inter-layer sliding are addressed in other chapters of this book.

2 Literature survey

This section gives an overview of existing literature that is related to the computational modeling
of lipid bilayers based on non-linear shell theory. The presentation focuses on finite element
models and follows Sauer et al. (2017).

In the past, several computational models have been proposed for cell membranes. Depending
on how the membrane is discretized, two categories can be distinguished: Models based on
an explicit surface discretization, and models based on an implicit surface discretization. In

8



the second category, the surface is captured by a phase field (Du and Wang, 2007) or level
set function (Salac and Miksis, 2011) that is defined on the surrounding volume mesh. In the
first category, the surface is captured directly by a surface mesh. The approach is particularly
suitable if only surface effects are studied, such that no surrounding volume mesh is needed.
This is the approach taken here. An example is to use Galerkin surface finite elements: The
first corresponding 3D FE model for lipid bilayer membranes seems to be the formulation
of Feng and Klug (2006) and Ma and Klug (2008). Their FE formulation is based on so-
called subdivision surfaces (Cirak and Ortiz, 2001), which provide C1-continuous FE surface
discretizations. Such discretizations are advantageous, since they do not require additional
degrees of freedom as C0-continuous FE formulations do. Still, C0-continuous FEs have been
considered to model red blood cell (RBC) membranes and their supporting protein skeleton
(Dao et al., 2003; Peng et al., 2010), phase changes of lipid bilayers (Elliott and Stinner, 2010),
and viscous cell membranes (Tasso and Buscaglia, 2013). Subdivision finite elements have been
used to study confined cells (Kahraman et al., 2012). Lipid bilayers can also be modeled with so-
called ‘solid shell’ (i.e. classical volume) elements instead of surface shell elements (Kloeppel and
Wall, 2011). Using solid elements, C0-continuity is sufficient, but the formulation is generally
less efficient. For two-dimensional and axisymmetric problems also C1-continuous B-spline and
Hermite finite elements have been used to study membrane surface flows (Arroyo and DeSimone,
2009; Rahimi and Arroyo, 2012), cell invaginations (Rim et al., 2014), and cell tethering and
adhesion (Rangarajan and Gao, 2015). The latter work also discusses the generalization to
three-dimensional B-spline FE. For some problems it is also possible to use specific, Monge-
patch FE discretizations (Rangamani et al., 2013, 2014).

The computational framework considered here is based on isogeometric finite elements (Hughes
et al., 2005; Cottrell et al., 2009). Those provide C1-continuity through the use of splines.
Isogeometric FE formulations have been applied to solid shells (Kiendl et al., 2009, 2010, 2015;
Benson et al., 2011; Nguyen-Thanh et al., 2011) based on rotation-free FE discretizations (Flores
and Estrada, 2007; Linhard et al., 2007; Dung and Wells, 2008). In Duong et al. (2017) a
new isogeometric FE formulation is proposed using curvilinear shell theory (Naghdi, 1982;
Pietraszkiewicz, 1989; Libai and Simmonds, 1998). The isogeometric shell model has been
extended to liquid shells (Sauer et al., 2017) based on the shell formulation of Steigmann (1999)
and the bilayer models of Canham (1970) and Helfrich (1973).

There are also several works that do not use finite element approaches. Examples are numerical
ODE integration (Agrawal and Steigmann, 2009), Monte Carlo methods (Ramakrishnan et al.,
2010), molecular dynamics (Li and Lykotrafitis, 2012), finite difference methods (Lau et al.,
2012; Gu et al., 2014) and mesh-free methods (Rosolen et al., 2013). There are also non-
Galerkin FE approaches that use triangulated surfaces, e.g. see Jarić et al. (1995); Jie et al.
(1998).

Ideal liquids lack shear stiffness. Under quasi-static conditions, liquid membranes and shells
therefore do not provide any resistance to in-plane shear deformations and thus need to be
stabilized. Various stabilization methods have been proposed in the past, considering artificial
viscosity (Ma and Klug, 2008; Sauer, 2014), artificial stiffness (Kahraman et al., 2012) and
normal offsets – either as a projection of the solution (with intermediate mesh update steps)
(Sauer, 2014), or as a restriction of the surface variation (Rangarajan and Gao, 2015). The
instability problem is absent, if shear stiffness is present, e.g. due to an underlying cytoskeleton,
like in RBCs (Dao et al., 2003; Peng et al., 2010; Kloeppel and Wall, 2011).
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Part II: Theoretical Description

Part II discusses the theoretical description of lipid bilayers that is required for the computa-
tional formulation following in Part III.

3 Surface description

This section discusses the description of curved surfaces based on the general framework of
curvilinear coordinates. The description is based on a surface parameterization (3.1), from
which the surface decomposition (3.2), surface differentiation (3.3), surface curvature (3.4) and
the surface Cayley-Hamilton theorem (3.5) follow.

3.1 Surface parameterization

The bilayer surface, denoted by S, can be described by the parametric description

x = x(ξα) , (1)

where ξα, α = 1, 2 are coordinates associated with a parameter domain P. Eq. (1) corresponds
to a mapping from point (ξ1, ξ2) ∈ P to the surface point x ∈ S, see Fig. 2. The mapping

Figure 2: Mapping between parameter domain P, reference surface S0 and current surface S
(Sauer et al., 2014).

reflects the property that the surface is a 2D object embedded within 3D space. Mapping (1)
fully characterizes the surface geometry. Coordinates ξα are known as curvilinear coordinates.
The tangent vector to coordinate ξα is given by

aα =
∂x

∂ξα
. (2)
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The two vectors a1 and a2 are generally not orthonormal, i.e. the four numbers

aαβ = aα · aβ , (3)

generally give [aαβ] 6= [1 0; 0 1]. The object aαβ is an important characteristic of the surface,
known as the surface metric. To restore orthonormality, a second set of tangent vectors a1 and
a2 is introduced such that

aα · aβ = δβα , (4)

where [δβα] = [1 0; 0 1]. δβα is known as the Kronecker delta. Multiplication by δβα simply

exchanges indices, e.g. aα δβα = aβ. It follows that

aα = aαβaβ , (5)

where [aαβ] = [aαβ]−1. Tangent vectors a1 and a2 are also called the co-variant tangent vectors,
while a1 and a2 are also known as the contra-variant tangent vectors. Analogously, aαβ is called
the co-variant surface metric and aαβ the contra-variant surface metric. Eq. (5) uses index
notation, i.e. summation is implied on repeated indices. By construction, repeated indices
always appear as co-variant/contra-variant pairs.

The normal vector to surface S can be defined as

n =
a1 × a2

‖a1 × a2‖
. (6)

The quantity Ja := ‖a1 × a2‖ gives the area enclosed by vectors a1 and a2. It can be shown
that Ja =

√
det[aαβ].

3.2 Surface decomposition

The triads {a1,a2,n} and {a1,a2,n} form bases that can be used to decompose vectors v ∈ R3

into their in-plane and out-of-plane components, i.e.

v = vs + vn , vs = vα aα = vα a
α , vn = vn , (7)

where v = v · n is the vector component along n, and vα = v · aα and vα = v · aα are the
vector components along aα and aα, respectively. vα is also called the co-variant and vα the
contra-variant vector component. Applying (5) to (7) yields vα = aαβ vβ. Likewise vα = aαβ v

β.
Generally, aαβ and aαβ raise and lower indices, respectively.

Two important second order tensors are the surface identity tensor,

i := aα ⊗ aα = aα ⊗ aα , (8)

and the full identity in R3,
1 := i+ n⊗ n . (9)

With those follow, iv = vs, ivs = vs, 1v = v and 1vs = vs. Thus i, can be viewed as a
projection operator, that extracts vs from v. In the same fashion i can be used to extract
the in-plane contents of a tensor. For example, the surface part of the second order tensor
c ∈ R3 × R3 is

cs := i · c i . (10)
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From (8) follows
cs = cαβ aα ⊗ aβ , cαβ = aα · caβ ,

= cαβ aα ⊗ aβ , cαβ = aα · caβ ,
= cαβ a

α ⊗ aβ , cαβ = aα · caβ ,

= c βα aα ⊗ aβ , c βα = aα · caβ .

(11)

If c is symmetric, then c αβ = cαβ =: cαβ . Apart from cs, tensor c also has components along
n⊗ n, aα ⊗ n and n⊗ aα.

Based on these definitions, three important tensor functions can be defined. The first is the
surface trace, defined by

trs c := i : c . (12)

It is related to the regular trace operator tr c := 1 : c, by trs c := tr cs. Further trs c = cαα. The
second important tensor function is the surface determinant, defined by

dets c := det[cαβ ] , (13)

i.e. as the usual matrix-determinant3 of the 2 × 2 matrix [cαβ ]. Since cαβ = aαγcγβ, the surface
determinant can also be written as

dets c := det[aαβ] det[cαβ] = det[cαβ]/ det[aαβ] . (14)

Note that this expression does not contain any summation on α or β, since det[...] is a scalar.
The third tensor function is the surface inverse c−1

s , defined from

c−1
s cs = i . (15)

c−1
s is a surface tensor with the contra-variant components

cαβinv :=
1

c
eαγ cδγ e

βδ , c := det[cαβ] , (16)

since cαβinv cβγ = δαγ . Here

[eαβ] =

[
0 1
−1 0

]
(17)

is the so-called unit alternator. In particular, (16) yields

aαβ =
1

a
eαγ aγδ e

βδ , a := det[aαβ] . (18)

Note that in general trs c 6= tr c, dets c 6= det c and c−1
s 6= c−1. Multiplying (18) by aαβ, one

can further find

a =
1

2
eαγ eβδ aαβ aγδ . (19)

3.3 Surface differentiation

The derivative encountered in (2) is called the parametric derivative. It is denoted by a comma.
Taking another parametric derivative gives

aα,β =
∂aα
∂ξβ

= x,αβ . (20)

3Note that det[cαβ ] = det[cαβ ] = det[c αβ ] even if cαβ 6= c αβ
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Generally, vector aα,β has both in-plane and out-of-plane components. But only the latter
is needed in order to describe surface curvature. This motivates the introduction of another
derivative, the so-called co-variant derivative. It is denoted by a semicolon. For basis vectors
aα and aα it is defined by

aα;β := (n⊗ n)aα,β (21)

and
aα;β := (n⊗ n)aα,β . (22)

Using Eqs. (9) and (8), leads to

aα;β = aα,β − Γγαβ aγ (23)

and
aα;β := aα,β + Γαβγ a

γ . (24)

where
Γγαβ := aγ · aα,β (25)

are the so-called Christoffel symbols. For scalars φ ∈ R and general vectors v ∈ R3 (that
are independent of the surface parameterization), such as the normal vector n, the covariant
derivative is defined to be equal to the parametric derivative. From (7) thus follow n;α = n,α,
v;α = v,α, (vαaα);β = (vαaα),β, (vαa

α);β = (vαa
α),β, and further

vα;β = vα,β − Γγαβ vγ ,

vα;β = vα,β + Γαβγ v
γ .

(26)

In classical physics, the gradient, divergence and Laplacian are important differential operators.
They can now be defined on the surface S. The surface gradient of a scalar function φ is defined
through the regular gradient ∇φ as

∇sφ := ∇φ · i , (27)

Inserting (8), gives ∇sφ = φ,α a
α. Likewise, the surface gradient for a vector function v is

defined as
∇sv := ∇v · i , (28)

such that ∇sv = v,α ⊗ aα. The surface divergence follows from the gradient as

divsv := tr∇sv . (29)

i.e. divsv = v,α · aα. The surface Laplacian of a scalar φ is then defined by

∆sφ := divs∇sφ , (30)

which leads to ∆sφ = φ;αβ a
αβ. In the above expressions φ;α = φ,α and v;α = v,α. However,

φ;αβ 6= φ,αβ. Instead
φ;αβ = φ,αβ − Γγαβ φ,γ . (31)
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3.4 Surface curvature

The surface curvature is characterized by the normal component of aα,β, i.e. by the four numbers

bαβ := n · aα,β = n · aα;β . (32)

They are known as the co-variant components of the curvature tensor b = bαβ a
α ⊗ aβ. The

curvature tensor is a surface tensor like i and cs. It is symmetric and has the mixed components
bαβ = aαγ bγβ and the contra-variant components bαβ = bαγ a

γβ. It appears in the formulas of
Gauss,

aα;β = bαβ n , (33)

and Weingarten,

n,α = −bβα aβ . (34)

Its two invariants

H :=
1

2
trs b (35)

and
κ := dets b (36)

are known as the mean curvature and Gaussian curvature of surface S. According to Sec. 3.2,
those can also be written as H = 1

2 b
α
α = 1

2 a
αβ bαβ and κ = b/a, where b := det[bαβ] and

a := det[aαβ]. The eigenvalues of b,

κ1/2 = H ±
√
H2 − κ , (37)

are the principal curvatures of S. Note that 2H = κ1 + κ2 and κ = κ1 κ2. Using (7) and
Weingarten’s formula, the surface divergence of vector v can also be written as

divsv = vα;α − 2Hv . (38)

3.5 Surface Cayley-Hamilton

According to the surface Cayley-Hamilton theorem, a tensor c satisfies the identity

cγγ aαβ − cαβ = c̃αβ , (39)

where c̃αβ :=
c

a
cαβinv are the contra-variant components of the adjugate tensor of c. For the

curvature tensor in particular, the Cayley-Hamilton-theorem becomes

2H aαβ − bαβ = κ bαβinv . (40)

Multiplying this by bγβ gives

bαγ bβγ = 2H bαβ − κ aαβ . (41)

Lowering indices with aαβ, then gives

bγα bγβ = 2H bαβ − κ aαβ . (42)

4 Surface kinematics

This section discusses the kinematics of deforming surfaces and examines its consequences.
Important kinematical objects are the surface strain tensor (Sec. 4.1), the surface velocity
gradient (Sec. 4.2) and the area-incompressibility constraint (Sec. 4.3). For the subsequent
developments, all kinematical objects need to be varied (Sec. 4.4) and linearized (Sec. 4.5).
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4.1 Surface deformation

In order to describe the deformation of surface S, a reference configuration, denoted S0, is
introduced. This could for example be a flat plane. But that is not a requirement. The only
requirement for S0 is that it is fixed in time. The reference surface S0 can be described in the
same form as S. Therefore all the quantities introduced in Sec. 3 can be re-defined for S0. This
is done by using upper-case letters, or adding subscript ‘0’. Surface S0 is thus described by
the mapping X = X(ξα) and the tangent vectors Aα = X ,α, see Fig. 2. Further objects that
follow in that fashion are Aαβ, Aαβ, N , Aα,β and so forth. In particular,

I := Aα ⊗Aα = Aα ⊗Aα (43)

denotes the surface identity tensor on S0, such that 1 = I +N ⊗N .

The mapping between S0 and S, denoted x = ϕ(X), is characterized by the surface deformation
gradient

F := aα ⊗Aα . (44)

and the surface stretch

J :=
Ja
JA

=

√
det[aαβ]√
det[Aαβ]

. (45)

They relate differential line and area elements according to dx = F dX and da = J dA. If the
number of surface particles is conserved during deformation, as will be considered here4, then

ρda = ρ0 dA , (46)

such that
J =

ρ0

ρ
, (47)

where ρ and ρ0 are the surface densities at x ∈ S and X ∈ S0, respectively.

Two important objects for describing in-plane deformation, are the left and right surface
Cauchy-Green tensors, given by

C := F TF = aαβA
α ⊗Aβ ,

B := FF T = Aαβ aα ⊗ aβ .
(48)

C is a surface tensor on S0, while B is a surface tensor on S. Their trace I1 := trC = I : C =
trB = i : B is equal to

I1 = Aαβaαβ . (49)

From C follows the surface Green-Lagrange strain tensor

E :=
(
C − I

)
/2 . (50)

Its surface components are
Eαβ :=

(
aαβ −Aαβ

)
/2 , (51)

such that E = EαβA
α ⊗Aβ. Likewise, the relative curvature tensor K = KαβA

α ⊗Aβ, with
the components

Kαβ := bαβ −Bαβ , (52)

is defined. It is an important object for describing bending.

4For an extension to changing mass, e.g. due to protein binding, see Sahu et al. (2017).
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4.2 Surface motion

In general, the deformation of the surface is time-dependent. The consequences of this on the
surface description and kinematics are discussed here. The velocity of a surface particle (e.g. a
lipid molecule) at x ∈ S, is v = ẋ, where the notation

˙(...) :=
D...

Dt
:=

∂...

∂t

∣∣∣∣
X=fixed

(53)

denotes the so-called material time derivative. The time derivative of the tangent vectors and
their parametric derivatives then follow as ȧα = ẋ,α = v,α and ȧα,β = ẋ,αβ = v,αβ. This then
leads to

ȧαβ = aα · ȧβ + ȧα · aβ (54)

and

ḃαβ = aα,β · ṅ+ n · ȧα,β . (55)

Taking a time derivative of n · n = 1 and n · aα = 0, one can find

ṅ = −(aα ⊗ n) ȧα = −aα(n · ȧα) , (56)

such that
ḃαβ =

(
ȧα,β − Γγαβ ȧγ

)
· n . (57)

Taking a time derivative of (4) and n · aα = 0, one can find

ȧα =
(
aαβ n⊗ n− aβ ⊗ aα

)
ȧβ . (58)

From (19) follows
ȧ = a aαβ ȧαβ , (59)

and therefore

J̇ =
∂J

∂aαβ
ȧαβ =

J

2
aαβ ȧαβ . (60)

From (18) follows
ȧαβ = aαβγδ ȧγδ , (61)

with

aαβγδ :=
∂aαβ

∂aγδ
=

1

2a

(
eαγeβδ + eαδeβγ

)
− aαβaγδ . (62)

A component-wise comparison shows that

aαβγδ = −1

2

(
aαγaβδ + aαδaβγ

)
, (63)

i.e. aαβγδ corresponds to the contra-variant components of a fourth order identity tensor:
Contracting aαβγδ with any symmetric tensor with components cγδ, yields

aαβγδ cγδ = −cαβ . (64)

It is noted that aαβγδ has major and minor symmetries. Given aαβγδ, Eq. (61) turns into

ȧαβ = −aαγ aβδ ȧγδ . (65)

An important object for fluids is the symmetric surface velocity gradient

d :=
(
v,α ⊗ aα + aα ⊗ v,α

)
/2 . (66)
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Its co-variant and contra-variant components, according to (11), simply are dαβ = ȧαβ/2 and
dαβ = −ȧαβ/2. In terms of the velocity components vα := v · aα and v := v · n, also dαβ =
aαγaβδ(vγ;δ + vδ;γ)/2− v bαβ holds.

The time derivative of the mean curvature yields

Ḣ =
1

2
ȧαβ bαβ +

1

2
aαβ ḃαβ . (67)

Using Eqs. (61) and (64) gives

Ḣ =
∂H

∂aαβ
ȧαβ +

∂H

∂bαβ
ḃαβ , (68)

with
∂H

∂aαβ
= −1

2
bαβ ,

∂H

∂bαβ
=

1

2
aαβ .

(69)

Analogously, the change of the Gaussian curvature is

κ̇ =
∂κ

∂aαβ
ȧαβ +

∂κ

∂bαβ
ḃαβ , (70)

with
∂κ

∂aαβ
= −κ aαβ ,

∂κ

∂bαβ
= κ bαβinv = b̃αβ .

(71)

e.g. see Sauer and Duong (2017).

The last object of interest is ḃαβ. Taking the time derivative of bαβ = bγδ a
γα aδβ yields

ḃαβ =
∂bαβ

∂aγδ
ȧγδ +

∂bαβ

∂bγδ
ḃγδ , (72)

with
∂bαβ

∂aγδ
= bαβγδ ,

∂bαβ

∂bγδ
= −aαβγδ ,

(73)

and

bαβγδ := −1

2

(
aαγ bβδ + bαγ aβδ + aαδ bβγ + bαδ aβγ

)
(74)

(Sauer and Duong, 2017). From a component-wise comparison, it can be shown that bαβγδ is
also equal to

bαβγδ = 2H
(
aαβ aγδ + aαβγδ

)
−
(
aαβ bγδ + bαβ aγδ

)
. (75)
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4.3 Surface incompressibility

An important constraint on the surface motion is surface- (or area-) incompressibility. During
such motion

g := J − 1 = 0 ∀ t , (76)

such that J̇ = 0. From (60) and (54) follows that area-incompressibility implies

ȧα · aα = 0 , (77)

which is equivalent to
divsv = 0 . (78)

4.4 Surface variation

In order to derive the weak form, which is essential for the finite element method, the variation
of several kinematical quantities is required. Therefore, a variation of position x ∈ S by the
amount δx is considered, and the effect on various kinematical quantities is examined. The
variation of the tangent vectors and its parametric derivative are δaα = δx,α and δaα,β = δx,αβ.

Since the variation follows the laws of differentiation, δ(...) has the same format as ˙(...), and one
can immediately extract the expressions for δaαβ, δbαβ, δn, δaα, δJ , δH, δκ, δaαβ and δbαβ

from the preceding section. In particular,

δaαβ = aα · δaβ + δaα · aβ (79)

δbαβ = aα,β · δn+ n · δaα,β (80)

or
δbαβ =

(
δaα,β − Γγαβ δaγ

)
· n (81)

and
δn = −(aα ⊗ n) δaα . (82)

4.5 Surface linearization

In order to employ Newton’s method, as is considered for the solution of the resulting finite
element equations, the weak form needs to be linearized w.r.t. configuration x. Therefore an
increment ∆x is considered and its effect on the system is examined. The change of aα and
aα,β, due to ∆x, thus is ∆aα = ∆x,α and ∆aα,β = ∆x,αβ. Since the linearization follows the

laws of differentiation, ∆(...) has the same format as ˙(...), and one can immediately extract
the expressions for ∆aαβ, ∆bαβ, ∆n, ∆aα, ∆J , ∆H, ∆κ, ∆aαβ and ∆bαβ from Sec. 4.2.
Since linearization follows after variation, the variations that still depend on x (instead of just
depending on δx), also need to be linearized. Linearizing (79) and (80), gives

∆δaαβ = δaα ·∆aβ + δaβ ·∆aα ,

∆δbαβ = δaα,β ·∆n+ δn ·∆aα,β + aα,β ·∆δn .
(83)

From (82) and (58) follows

∆δn = −(δaα · n)(n ·∆aβ) aαβ n+ (δaα · n)(aα ·∆aβ)aβ + (δaα · aβ)(n ·∆aβ)aα , (84)
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such that

aα,β ·∆δn = δaγ ·
(
Γγαβ a

δ ⊗ n+ Γδαβ n⊗ aγ − aγδ bαβ n⊗ n
)

∆aδ . (85)

Inserting (85) into (83) and using (82), then gives

∆δbαβ = − δaγ · (n⊗ aγ) ∆aα,β − δaα,β · (aγ ⊗ n) ∆aγ

+ δaγ ·
(
Γγαβ a

δ ⊗ n+ Γδαβ n⊗ aγ − aγδ bαβ n⊗ n
)

∆aδ .
(86)

Note that all these expressions are symmetric w.r.t. linearization and variation.

5 Surface balance

This section presents the mechanical balance laws for shells. The sectional forces and sectional
moments are introduced (Sec. 5.1), and then linear momentum (Sec. 5.2), angular momentum
(Sec. 5.3) and mechanical power (Sec. 5.5) are discussed. Sec. 5.4 discusses boundary moments.
The presentation follows Sauer and Duong (2017).

5.1 Sectional forces and moments

Consider an infinitesimal surface element da ⊂ S, located at x and aligned along a1 and a2 as
is shown in Fig. 3. On the cut surfaces the distributed5 sectional force and moment components
Nαβ, Sα and Mαβ are defined as shown. The sectional forces are collected in the stress tensor

σ := Nαβ aα ⊗ aβ + Sα aα ⊗ n , (87)

such that the traction vector on the cut normal to ν is given through Cauchy’s formula

T := σTν . (88)

With ν = να a
α one can write T = T α να, where

T α := σT aα = Nαβ aβ + Sαn , (89)

are then the tractions defined on the face normal to aα, see Fig. 3.
The distributed section moments are collected in the moment tensor

µ := −Mαβ aα ⊗ aβ , (90)

such that one can define the distributed moment vector

M := µT ν (91)

on the cut normal to ν. Similar to before, one can write

M = Mα να , (92)

with
Mα := µT aα = −Mαβ aβ . (93)

5per current length of the cut face

19



Figure 3: Sectional forces and moments (Sauer and Duong, 2017): Components of the traction
and moment vectors T 1, T 2, M1 and M2 defined on the faces normal to a1 and a2 (top).
Components of the physical moment vector m acting on the same faces (bottom).

The components of −Mα are shown in the top right inset of Fig. 3. Vector M can be associated
with a force couple (Sahu et al., 2017). The moment vector physically acting on the element is
given by the quantity

m := n×M . (94)

Inserting (92) and (93), and using the identity

aβ × n = τβ ν − νβ τ , (95)

gives
m = mν ν +mτ τ (96)

with the local Cartesian components

mν := Mαβ να τβ ,

mτ := −Mαβ να νβ .
(97)

The vector M can then also be written as

M = mτ ν −mν τ . (98)

The bottom inset of Fig. 3 shows the vector m acting on faces aα.
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5.2 Balance of linear momentum

Consider a part of the surface S, denoted R that is assumed to have a smooth boundary ∂R.
The ‘body’ force (per current surface area) acting on R is denoted by f . For every such surface
part, the change of its linear momentum is equal to the external forces acting on it, i.e.

D

Dt

∫
R
ρv da =

∫
R
f da+

∫
∂R
T ds ∀R ⊂ S . (99)

Here, D/Dt denotes the material time derivative introduced in (53), and v is the material
velocity at x. From the local conservation of mass (46) and the surface divergence theorem∫

∂R
T α να ds =

∫
R
T α;α da , (100)

immediately follows the local form of (99),

T α;α + f = ρ v̇ ∀x ∈ S , (101)

which is the strong form equilibrium equation at x ∈ S. If desired, it can be decomposed into
in-plane and out-of-plane contributions (Jenkins, 1977; Sauer and Duong, 2017).

5.3 Balance of angular momentum

For every surface part R ⊂ S, the change of angular momentum is equal to the moment of the
external forces, i.e.

D

Dt

∫
R
ρx× v da =

∫
R
x× f da+

∫
∂R
x× T ds+

∫
∂R
m ds ∀R ⊂ S . (102)

Sauer and Duong (2017) show that this is satisfied if and only if

σαβ := Nαβ − bβγMγα (103)

is symmetric and
Sα = −Mβα

;β . (104)

The last equation expresses the well known Kirchhoff-Love result that the out-of-plane shear
component follows as the derivative of the bending moments. It turns out that apart from σαβ

also Mαβ is symmetric, see Sec. 6.2. According to relation (103), the in-plane stress component

Nαβ = σαβ + bβγM
γα (105)

is influenced by bending, and consequently Nαβ is generally non-symmetric.

5.4 Boundary conditions

At the boundary of the surface, ∂S, the boundary conditions

x = ϕ̄ on ∂xS ,
t = t̄ on ∂tS ,
mτ = m̄τ on ∂mS

(106)

can be prescribed. Here, mτ is the bending moment component parallel to boundary ∂S. For
Kirchhoff-Love shells, bending moments perpendicular to boundary ∂S, denoted mν , affect the
boundary traction. Therefore the effective traction

t := T − (mνn)′ (107)

is introduced, e.g. see Sauer and Duong (2017). In the following examples, mν = 0 is considered.
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5.5 Mechanical power balance

The mechanical power balance follows from equilibrium. Contracting the equilibrium equation
(101) with the velocity v and integrating over R ⊂ S, gives∫

R
v ·
(
T α;α + f − ρ v̇

)
da = 0 ∀R ⊂ S . (108)

In here, the last term corresponds to the change of the kinetic energy

K :=
1

2

∫
R
ρv · v da , (109)

which, due to mass conservation, is given by

K̇ :=

∫
R
ρv · v̇ da . (110)

Applying the surface divergence theorem to the first term, rearranging terms and applying the
surface divergence theorem again, leads to the mechanical power balance (Sauer and Duong,
2017)

K̇ + Pint = Pext ∀R ⊂ S , (111)

where

Pint =
1

2

∫
R
σαβ ȧαβ da+

∫
R
Mαβ ḃαβ da (112)

is the interal stress power of R and

Pext =

∫
R
v · f da+

∫
∂R
v · T ds+

∫
∂R
ṅ ·M ds (113)

is the power of the external forces acting on R and ∂R. Using definition (107), Pext can be
rewritten into (Sauer and Duong, 2017)

Pext =

∫
R
v · f da+

∫
∂R

(
v · t+ ṅ ·mτ ν

)
ds+ [v ·mν n

]
, (114)

where the last term denotes the power of the point loads mν n that are present at corners of
boundary ∂R. For smooth boundaries, or for mν = 0, the last term vanishes.

The derivation of the weak form of Eq. (101), considered in Sec. 8, is analogous to the derivation
of the mechanical power balance.

6 Surface constitution

This section discusses the constitutive framework of lipid bilayers, accounting for elastic bend-
ing, (near-) area-incompressibility and viscous shear. The framework follows from the dissipa-
tion inequality (Sec. 6.1) using classical thermodynamical arguments (Sec. 6.2). For later use,
linearization (Sec. 6.3) and stability (Sec. 6.4) are also discussed briefly.
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6.1 Dissipation inequality

The local power density σαβ ȧαβ/2 + Mαβ ḃαβ, appearing within (112), also appears in the
mechanical dissipation inequality

D :=
1

2
σαβ ȧαβ +Mαβ ḃαβ − ρṪ s− ρψ̇ ≥ 0 , (115)

where T is the temperature, s is specific entropy, and ψ is the specific Helmholtz free energy (per
unit mass). (115) is a consequence of the second law of thermodynamics for surfaces, e.g. see
Sahu et al. (2017). Under isothermal conditions, considered here, the ρṪ s term vanishes. The
dissipation D has units of power per current area. Multiplying by J , D can be related to the
reference area. Introducing

ταβ := Jσαβ ,

Mαβ
0 := JMαβ ,

(116)

the isothermal dissipation inequality can thus be written as

D0 :=
1

2
ταβ ȧαβ +Mαβ

0 ḃαβ − Ψ̇0 ≥ 0 , (117)

where Ψ0 := ρ0ψ is the Helmholtz free energy per reference area. Here, (47) and mass conser-
vation have been used.

6.2 Constrained visco-elasticity

The free energy Ψ0 is a function of the deformation, which, for thin shells, is fully characterized
by aαβ and bαβ. In order to account for constraints on aαβ, such as area-incompressibility, Ψ0

is expressed as
Ψ0 = Ψ0x + Ψ0g , (118)

where
Ψ0x = Ψ0x(aαβ, bαβ) (119)

denotes the contribution from deformation, and

Ψ0g = q g(aαβ) (120)

denotes the contribution associated with a constraint g = 0. q denotes the Lagrange multiplier
associated with the constraint. Applying chain rule then yields

Ψ̇0 =
∂Ψ0

∂aαβ
ȧαβ +

∂Ψ0

∂bαβ
ḃαβ + g q̇ , (121)

so that (117) yields (
1

2
ταβ − ∂Ψ0

∂aαβ

)
ȧαβ +

(
Mαβ

0 − ∂Ψ0

∂bαβ

)
ḃαβ − g q̇ ≥ 0 . (122)

The surface stress σαβ is considered to contain elastic and viscous contributions in the form

σαβ = σαβelas + σαβvisc . (123)

The elastic contribution is independent of the rate ȧαβ, while the viscous contribution depends

on the rate ȧαβ such that ȧαβ → 0 implies σαβvisc → 0. The moment Mαβ is considered to be
purely elastic.
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Since (122) applies to all thermodynamic processes (with general ȧαβ, ḃαβ and q̇), the classical
argument by Coleman and Noll (1964) (based on considering a set of special ȧαβ, ḃαβ and q̇)
leads to the constitutive equations

σαβelas =
2

J

∂Ψ0

∂aαβ
,

Mαβ =
1

J

∂Ψ0

∂bαβ
,

g = 0 ,

σαβvisc ȧαβ ≥ 0 .

(124)

The first two relations correspond to classical hyperelasticity, the third is just the constraint,
and the fourth implies that viscous stresses are dissipative. A simple expression that satisfies
this6 is

σαβvisc = −η ȧαβ . (125)

where η ≥ 0 is a constant. Comparing to 3D fluids, η can be identified as the dynamic surface
viscosity. An extension considering more general viscous stresses, as well as thermal fields and
changing mass is provided by Sahu et al. (2017).

For the later developments, the variation of Ψ0 is required. Similar to (121), this can be written
as

δΨ0 = δxΨ0 + g δq , (126)

with

δxΨ0 :=
∂Ψ0

∂aαβ
δaαβ +

∂Ψ0

∂bαβ
δbαβ . (127)

From (124) follows

δxΨ0 = 1
2 τ

αβ δaαβ +Mαβ
0 δbαβ . (128)

If no constraint is present q and δq are zero.

6.3 Linearization of δΨ0

Linearizing (126), gives
∆δΨ0 = ∆xδxΨ0 + δg∆q + δq∆g , (129)

with

δg =
∂g

∂aαβ
δaαβ , ∆g =

∂g

∂aαβ
∆aαβ , (130)

and

∆xδxΨ0 = δaαβ
∂2Ψ0

∂aαβ ∂aγδ
∆aγδ + δaαβ

∂2Ψ0

∂aαβ ∂bγδ
∆bγδ +

∂Ψ0

∂aαβ
∆δaαβ

+ δbαβ
∂2Ψ0

∂bαβ ∂aγδ
∆aγδ + δbαβ

∂2Ψ0

∂bαβ ∂bγδ
∆bγδ +

∂Ψ0

∂bαβ
∆δbαβ .

(131)

6Since σαβvisc ȧαβ = 4η d : d = 4η‖d‖2 > 0 due to (65) and (66).
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Introducing the material tangents

cαβγδ := 4
∂2Ψ0

∂aαβ ∂aγδ
= 2

∂ταβ

∂aγδ
,

dαβγδ := 2
∂2Ψ0

∂aαβ ∂bγδ
=

∂ταβ

∂bγδ
,

eαβγδ := 2
∂2Ψ0

∂bαβ ∂aγδ
= 2

∂Mαβ
0

∂aγδ
,

fαβγδ :=
∂2Ψ0

∂bαβ ∂bγδ
=

∂Mαβ
0

∂bγδ
,

(132)

gives
∆xδxΨ0 = cαβγδ 1

2δaαβ
1
2∆aγδ + dαβγδ 1

2δaαβ ∆bγδ + ταβ 1
2∆δaαβ

+ eαβγδ δbαβ
1
2∆aγδ + fαβγδ δbαβ ∆bγδ + Mαβ

0 ∆δbαβ .
(133)

Note that cαβγδ and fαβγδ posses both minor and major symmetries; dαβγδ and eαβγδ posses
only minor symmetries, but additionally satisfy

dαβγδ = eγδαβ . (134)

Due to the symmetries of c, d and e, and due to Eqs. (79) and (81), one finds

cαβγδ 1
2δaαβ

1
2∆aγδ = δaα · aβ cαβγδ aγ ·∆aδ ,

dαβγδ 1
2δaαβ ∆bγδ = δaα · aβ dαβγδ n ·∆ãα,β ,

eαβγδ δbαβ
1
2∆aγδ = δãα,β · n eαβγδ aγ ·∆aδ ,

fαβγδ δbαβ ∆bγδ = δãα,β · n fαβγδ n ·∆ãα,β ,

(135)

where
δãα,β := δaα,β − Γεαβ δaε ,

∆ãα,β := ∆aα,β − Γεαβ ∆aε .
(136)

Expressions for ∆δaαβ and ∆δbαβ are given in (83) and (86).

6.4 Material stability

For many material models, the four tangent matrices introduced in (132) can be written in the
format

ĉαβγδ = ĉaa a
αβ aγδ + ĉa a

αβγδ + ĉab a
αβ bγδ + ĉba b

αβ aγδ + ĉbb b
αβ bγδ , (137)

with suitable definitions of coefficients ĉaa, ĉa, ĉab, ĉba and ĉbb. Sauer and Duong (2017) show
that material stability requires

2ĉaa − ĉa > 0 & ĉa < 0 . (138)

7 The Helfrich energy

In order to fully characterize the constitutive behavior, the Helmholtz free energy Ψ0 needs
to be specified. The bending behavior of lipid bilayers is commonly described by the bending
model of Helfrich (1973)

w = k (H −H0)2 + kgκ . (139)
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Here k is the bending modulus, kg is the Gaussian modulus and H0 denotes the so-called
spontaneous curvature that can be used to model the presence of certain proteins embedded
within the lipid bilayer.

This section presents the Helfrich energy for the cases of area-compressibi-lity (Sec. 7.1) and
area-incompressibility (Sec. 7.2), and discussed its properties (Sec. 7.3) and tangent matrices
(Sec. 7.4). Sec. 7.5 discusses the relation between the models of Helfrich and Canham. The
presentation follows Sauer et al. (2017) and Sauer and Duong (2017).

7.1 Area-compressible lipid bilayer

The Helfrich energy is an energy density per current surface area. Multiplying it by J and
adding a quadratic energy term for the surface area change, gives the Helmholtz free energy

Ψ0 = J w +
K

2
(J − 1)2 , (140)

where K is the surface bulk modulus. A quadratic energy term is suitable for small area changes.
For lipid bilayers, typically |J−1| < 4% before rupture occurs. According to (123), (124), (125)
and (105), the stress and moment components then become

σαβ =
(
K (J − 1) + k∆H2 − kg κ

)
aαβ − 2 k∆H bαβ − η ȧαβ ,

Mαβ =
(
k∆H + 2 kgH

)
aαβ − kg b

αβ ,

Nαβ =
(
K(J − 1) + k∆H2

)
aαβ − k∆H bαβ − η ȧαβ ,

(141)

where ∆H := H −H0.

7.2 Area-incompressible lipid bilayer

Since K is usually very large for lipid-bilayers, one may as well consider the surface to be fully
area-incompressible. Using the Lagrange multiplier approach, one now has

Ψ0 = J w + q g , (142)

where the incompressibility constraint (76) is enforced by the Lagrange multiplier q. q is an
independent variable that needs to be accounted for in the solution procedure (see Sec. 11).
Physically, q corresponds to a surface tension. The stress and moment components now become

σαβ =
(
q + k∆H2 − kg κ

)
aαβ − 2 k∆H bαβ − η ȧαβ ,

Mαβ =
(
k∆H + 2 kgH

)
aαβ − kg b

αβ ,

Nαβ =
(
q + k∆H2

)
aαβ − k∆H bαβ − η ȧαβ .

(143)

They are identical to (141) for q = Kg.

As K becomes larger and larger, both models approach the same solution. So from a physical
point of view it may not make a big difference which model is used. Computationally, model
(140) is easier to handle but can become inaccurate for large K, as is shown in Sauer et al.
(2017). In analytical approaches, often (142) is preferred as it usually simplifies the solution.
Examples for (142) are found in Baesu et al. (2004) and Agrawal and Steigmann (2009); (140)
is considered in the original work of Helfrich (1973).

26



7.3 Model properties

In both preceding models, the membrane part only provides bulk stiffness, but lacks shear
stiffness. For quasi-static computations the model can thus become unstable and should be
stabilized, as is discussed in Sec. 12. Interestingly, the bending part of the Helfrich model can
contribute an in-plane shear stiffness, which is shown in the following.

To this end, the surface tension
γ := 1

2 σ : i = 1
2N

α
α , (144)

is first introduced. For both (141) and (143) one finds

γ = q − kH0 ∆H , (145)

where q = Kg in the former case. It can be seen that for H0 6= 0, the bending part contributes to
the surface tension. This dependency has also been noted by Lipowsky (2013) and Rangamani
et al. (2014). The surface tension is therefore not given by the membrane part alone. For the
compressible case, the effective bulk modulus can then be determined from

Keff :=
∂γ

∂J
, (146)

i.e. as the change of γ w.r.t. J . One finds

Keff = K + kH0H/J , (147)

since ∂H/∂J = −H/J . Likewise, the effective shear modulus can be defined from

µeff := J aαγ
∂Nαβ

dev

2 ∂aγδ
aβδ , (148)

i.e. as the change of the deviatoric stress w.r.t. the deviatoric deformation (characterized by
aγδ/J). The deviatoric in-plane stress is given by

Nαβ
dev := Nαβ − γ aαβ . (149)

One finds

Nαβ
dev = k∆H

(
H aαβ − bαβ

)
(150)

for both (141) and (143). Evaluating (148) thus gives

µeff = Jk
(
3H2 − 2HH0 − κ

)
/2 . (151)

The model therefore provides stabilizing shear stiffness if 3H2 > 2HH0 + κ. Since this is not
always the case (e.g. for flat surface regions), additional shear stabilization should be provided
for quasi-static computations. This is discussed in Sec. 12. The value of µeff is discussed further
in the examples of Sec. 13. It is shown that µeff can sufficiently stabilize the problem such that
no additional shear stabilization is needed. It is also shown that µeff does not necessarily need
to be positive to avoid instabilities. Geometric stiffening, arising in large deformations, can also
stabilize the surface.

7.4 Material tangent

In the following, the material tangents of Eq. (132) are evaluated and assessed. This is done by
examining the contributions to (141) and (143) piecewise.

27



7.4.1 Area-compressibility

For the area-compressible case, the elastic membrane stress is characterized by

ταβ = KJ (J − 1) aαβ . (152)

From (132) thus follows

cαβγδ = KJ (2J − 1) aαβaγδ + 2KJ (J − 1) aαβγδ . (153)

Since ca = 2KJ(J − 1) ≥ 1 for J ≥ 1, this model does not satisfy criteria (138) and therefore
is unstable by itself.

7.4.2 Area-incompressibility

For the area-incompressible case, the elastic membrane stress is characterized by

ταβ = −qJ aαβ , (154)

so that
cαβγδ = −qJ aαβaγδ − 2qJ aαβγδ . (155)

Since 2caa− ca = 0, this model does not satisfy criteria (138) and therefore is unstable by itself.

7.4.3 Bending part

The bending contribution, characterized by

ταβ = J
(
k∆H2 − kg κ

)
aαβ − 2k J ∆H bαβ ,

Mαβ
0 = J

(
k∆H + 2kg H

)
aαβ − kg J b

αβ ,
(156)

leeds to

cαβγδ = caa a
αβ aγδ + ca a

αβγδ + cbb b
αβ bγδ + cab

(
aαβ bγδ + bαβ aγδ

)
,

dαβγδ = daa a
αβ aγδ + da a

αβγδ + dab a
αβ bγδ + dba b

αβ aγδ = eγδαβ ,

fαβγδ = faa a
αβ aγδ + fa a

αβγδ ,

(157)

with
caa = J

(
k∆H (∆H − 8H) + kg κ

)
,

ca = 2J
(
k∆H (∆H − 4H)− kg κ

)
,

cbb = 2k J ,

cab = cba = 2k J ∆H ,

daa = J
(
k∆H − 2kg H

)
,

da = 2J k∆H ,

dab = J kg ,

dba = −J k ,
faa = J (k/2 + kg) ,

fa = J kg .

(158)

The stability can be assessed by examining the bending tangent fαβγδ. According to (138), it
is easy to see that stability requires

0 < −kg < k . (159)
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7.5 The Canham model

A special case of the Helfrich model is the bending model of Canham (1970). It can be expressed
as

Ψ0 = J w , w :=
c

2

(
κ2

1 + κ2
2

)
. (160)

Here, w can also be written as w = c bαβ b
β
α/2 or w = c (2H2 − κ), so that the Canham model

follows from the Helfrich model with k = 2c, kg = −c and H0 = 0. Since this satisfies (159),
the model is stable in bending. In particular, the Canham model gives

σαβ = c
(
2H2 + κ

)
aαβ − 4cH bαβ − η ȧαβ (161)

and
Mαβ = c bαβ . (162)

8 Weak form

This section presents the weak form of the thin shell equation (101), considering the area-
compressible case (Sec. 8.1) and the area-incompressible case (Sec. 8.2). The decomposition
into in-plane and out-of-plane contributions (Sec. 8.3) and the linearization (Sec. 8.4) follow.
The presentation follows Sauer and Duong (2017) and Sauer et al. (2017).

8.1 Unconstrained system

The weak form of equilibrium equation (101) can be derived analogously to the mechanical
power balance in Sec. 5.5 by simply replacing the velocity v with the admissible variation
δx ∈ V. Immediately one obtains

Gin +Gint −Gext = 0 ∀ δx ∈ V , (163)

with

Gin =

∫
S0
δx · ρ0 v̇ dA ,

Gint =

∫
S0
δxΨ0 dA =

∫
S0

1

2
δaαβ τ

αβ dA+

∫
S0
δbαβM

αβ
0 dA ,

Gext =

∫
S
δx · f da+

∫
∂S
δx · T ds+

∫
∂S
δn ·M ds ,

(164)

according to Eqs. (110)–(113). As noted in (123), stress ταβ = Jσαβ, and hence also Gint, has
elastic and viscous contributions. Due to Eq. (128), the elastic part of Gint can also be obtained
as the variation of

Πint =

∫
S0

Ψ0 dA (165)

w.r.t. x, i.e. Gint,el = δxΠint. Thus, if Gext is also derivable from a potential, the quasi-static
weak form Gint−Gext = 0 ∀ δx ∈ V is the result of the principle of stationary potential energy.
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8.2 Constrained system

For the constrained problem, the constraint g = 0 needs to be included. The weak form of that
is simply

Gg =

∫
S0
δq g dA = 0 ∀ δq ∈ Q , (166)

where δq ∈ Q is a suitably chosen variation of the Langange multiplier q. The weak form
problem statement is then given by solving the two equations

Gin +Gint −Gext = 0 ∀ δx ∈ V ,
Gg = 0 ∀ δq ∈ Q ,

(167)

for x and q. Due to Eq. (126), one can find Gint,el + Gg = δΠint, such that the static version
of weak form (167), for suitable Gext, is still the result of the principle of stationary potential
energy.

8.3 Decomposition

As noted in Sauer et al. (2014), the weak form can be decomposed into in-plane and out-of-plane
contributions. Denoting the in-plane and out-of-plane components of δx by wα and w, such
that δx := wα a

α + wn, one finds that

δaαβ = wα;β + wβ;α − 2w bαβ . (168)

Thus, the first part of Gint can be split into in-plane and out-of-plane contributions as∫
S

1

2
δaαβ σ

αβ da = Gin
σ +Gout

σ , (169)

with

Gin
σ =

∫
S
wα;β σ

αβ da (170)

and

Gout
σ = −

∫
S
w bαβ σ

αβ da . (171)

In principle – although not needed here – the second part of Gint can also be split into in-plane
and out-of-plane contributions (Sauer and Duong, 2017).

8.4 Linearization

In the following, the linearization of the quasi-static case is discussed, where inertia and viscosity
are absent. Inertia is linearly dependent on acceleration and thus easy to linearize. Viscosity can
be conveniently treated within the framework of the implicit Euler time discretization scheme
discussed in Sec. 10.4 and linearized in Sec. 10.5. The quasi-static case of weak form (167) can
be written in the combined form

δΠint −Gext = 0 ∀ δx ∈ V & δq ∈ Q , (172)

where δΠint = Gint +Gg. Linearizing the internal virtual work gives, according to (129),

∆δΠint =

∫
S0

∆xδxΨ0 dA+

∫
S0
δg∆q dA+

∫
S0
δq∆g dA , (173)
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where ∆xδxΨ0 is given by (133). In order to linearize Gext, dead loading for f , t and M is
considered. The case of live pressure loading is given in Sauer et al. (2014). For dead loading,
Sauer and Duong (2017) show that

∆Gext =

∫
∂S
mτ δaα ·

(
νβ n⊗ aα + να aβ ⊗ n

)
∆aβ ds , (174)

which is symmetric w.r.t. variation and linearization.

9 Analytical solutions

This section presents two analytical solutions that describe simple bilayer deformations. They
are useful for the verification of numerical results. Considered are pure bending and stretching
of a flat sheet (Sec. 9.1), and the inflation of a sphere (Sec. 9.2).

9.1 Pure bending and stretching of a flat sheet

The first example considers the pure bending and stretching of a flat sheet. It is taken from
Sauer and Duong (2017) and Sauer et al. (2017). The sheet has the dimension S × L and is
parameterized by the coordinates ξ1 ∈ [0, S] and ξ2 ∈ [0, L]. The sheet is deformed into a curved
sheet with dimension s × ` by applying the homogeneous curvature κ1 and the homogeneous
stretches λ1 = s/S and λ2 = `/L as is shown in Fig. 4. The deformed sheet thus forms a

Figure 4: Pure bending and stretching of a sheet (Sauer and Duong, 2017): Deformation of a
flat sheet into a curved sheet with constant radius.

circular arc with radius r = 1/κ1. The parameters S, L, κ1, λ1 and λ2 are considered given,
unless specified otherwise. According to the figure, the surface in its initial configuration can
be described by

X(ξ1, ξ2) = ξ1 e1 + ξ2 e2 , (175)

while its current surface can be described by

x(ξ1, ξ2) = r sin θ e1 + λ2 ξ
2 e2 + r (1− cos θ) e3 , (176)
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with θ := κ1λ1ξ
1 and r := 1/κ1. The rotation at the end thus is Θ = κ1λ1S. From these

relations follow the initial tangent vectors

A1 =
∂X

∂ξ1
= e1 ,

A2 =
∂X

∂ξ2
= e2 ,

(177)

the current tangent vectors

a1 =
∂x

∂ξ1
= λ1

(
cos θ e1 + sin θ e3

)
,

a2 =
∂x

∂ξ2
= λ2 e2 ,

(178)

and the current surface normal

n = − sin θ e1 + cos θ e3 . (179)

This results in the kinematic quantities

[Aαβ] =

[
1 0
0 1

]
, [Aαβ] =

[
1 0
0 1

]
, (180)

[aαβ] =

[
λ2

1 0
0 λ2

2

]
, [aαβ] =

[
λ−2

1 0

0 λ−2
2

]
, J = λ1λ2 , (181)

and

[bαβ] =

[
κ1λ

2
1 0

0 0

]
, [bαβ ] =

[
κ1 0
0 0

]
,

[bαβ] =

[
κ1λ

−2
1 0

0 0

]
, H =

κ1

2
, κ = 0 .

(182)

With this, the in-plane stress components become

N1
1 = q − kH2 ,

N2
2 = q + kH2 ,

(183)

both for the area-incompressible model of (143) and the area-compressible model of (141) with
q = K(J − 1).

Now consider a cut at θ that is perpendicular to the normal

ν = a1/λ1 , (184)

such that
ν1 = a1 · ν = λ1 and ν2 = a2 · ν = 0 . (185)

The distributed bending moment acting on the cut is given by M = Mαβνανβ . Both models,
(141) and (143), lead to the simple linear relation

M = kH , (186)

between the prescribed curvature and the resulting bending moment. At θ = 0 and θ = Θ,
M corresponds to the boundary moment (per current length of the support). Measured per
reference length, the boundary moment is M0 = λ2M .
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If the boundaries at ξ1 = 0 and ξ1 = S are considered stress-free, N1
1 = 0, so that

q = kH2, (187)

and consequently the support reaction (per current length) along ξ2 = 0 and ξ2 = L is N :=
N2

2 = 2kH2. Per reference length this becomes N0 = λ1N .

For the area-incompressible model of (142), one has λ1 = 1/λ2, such that the sheet is in a state
of pure shear. For the area-compressible case according to model (140), one can determine λ1

from (187) with J = λ1λ2, giving

λ1 =
1

λ2

[ k
K
H2 + 1

]
. (188)

9.2 Inflation of a sphere

The second example considers the inflation of a spherical vesicle. It is taken from Sauer et al.
(2017). Since the surface area increases during inflation, the area-incompressible model (140)
has to be considered. For this model, the in-plane traction component, given in (141), is

Nαβ = Na a
αβ +Nb b

αβ , (189)

with
Na := k∆H2 +K (J − 1) ,

Nb := −k∆H .
(190)

The initial radius of the sphere is denoted by R, the initial volume is denoted by V0 = 4πR3/3.
The vesicle remains spherical during inflation. The current radius during inflation is denoted
by r, the current volume by V = 4πr3/3. Considering the surface parameterization

x(φ, θ) =

 r cosφ sin θ
r sinφ sin θ
−r cos θ

 , (191)

one finds

[aαβ] =
1

r2

[
1/ sin2 θ 0

0 1

]
, (192)

bαβ = −aαβ/r and H = −1/r. The traction vector T = ναT
α on a cut ⊥ ν thus becomes

T = (Na −Nb/r)ν + Sαναn (193)

according to (89). The in-plane component Tν := Na − Nb/r must equilibrate the current
pressure according to the well-known relation

p =
2Tν
r
. (194)

One can thus establish the analytical pressure-volume relation

p̄(V̄ ) = 2H̄0 V̄
− 2

3 − 2H̄2
0 V̄
− 1

3 + 2K̄
(
V̄

1
3 − V̄ −

1
3

)
, (195)

normalized according to the definitions p̄ := pR3/k, V̄ := V/V0, H̄0 := H0R and K̄ := KR2/k.
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Part III: Computational formulation

Part III discusses the computational formulation based on the theory described in Part II. The
finite element equations are presented for the shell PDE (Sec. 10) and the incompressibility
constraint (Sec. 11). Stabilization is addressed (Sec. 12) and several numerical examples are
presented (Sec. 13). Part III follows the developments in Duong et al. (2017) and Sauer et al.
(2017).

10 Rotation-free shell FE

The shell theory presented in Part II results in a fourth order, nonlinear partial differential
equation (PDE), which involves displacement degrees of freedom, but no rotations. In or-
der to solve its weak form, a C1-continuous finite element discretization is required.7 Such a
discretization is provided by isogeometric finite elements. In Duong et al. (2017) a new iso-
geometric FE formulation is presented for thin shells. The formulation is suitable for a wide
range of materials, and it accounts for large deformations and rotations as Fig. 5 demonstrates.
This section presents the formulation (Sec. 10.1-10.3) and discussed how to treat surface vis-

Figure 5: Pinching of a cylindrical shell (Duong et al., 2017).

cosity (Sec. 10.4), C1-continuity (Sec. 10.6) and patch boundaries (Sec. 10.7). Linearization is
addressed in Sec. 10.5.

10.1 FE approximation

The surface geometry of the reference and current configuration (see Fig. 2) is discretized into
nel finite elements Ωe, e = 1, ..., nel. Within each element, the surface is approximated by the
finite element interpolations

Xh = N Xe (196)

and
xh = N xe , (197)

where N := [N11, ..., Nne1] is a (3 × 3ne) array containing the ne nodal shape functions
NI = NI(ξ

1, ξ2) of element Ωe defined in parameter space P. Xe := [XT
1 , ...., X

T
ne ]

T and
xe := [xT

1 , ...., x
T
ne ]

T contain the ne nodal position vectors of Ωe. The tangent vectors of the

7Strictly, G1-continuity (i.e. continuity in n but not necessary in aα) is sufficient.
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surface are thus approximated by

Ah
α =

∂Xh

∂ξα
= N,α Xe (198)

and

ahα =
∂xh

∂ξα
= N,α xe . (199)

Likewise, the the tangent derivative aα,β and the variations δx and δaα are approximated by

ahα,β = N,αβ xe , (200)

δxh = N δxe (201)

and
δahα = N,α δxe . (202)

According to (6), the surface normals N and n are thus approximated by

Nh =
Ah

1 ×Ah
2

‖Ah
1 ×Ah

2‖
(203)

and

nh =
ah1 × ah2
‖ah1 × ah2‖

. (204)

With these approximations, all the kinematical quantities of Sec. 4, like aαβ, aαβ, aα and bαβ,
can be approximated.

10.2 Discretization of kinematical variations

Based on the above expressions, all the variations appearing within weak form (163) can be
evaluated. According to (79) and (81), the discretization of δaαβ and δbαβ follow as

δahαβ = δxT
e

[
NT
,α N,β + NT

,β N,α

]
xe ,

δbhαβ = δxT
e NT

;αβ n
h ,

(205)

where
N;αβ := N,αβ − Γγαβ N,γ (206)

has been introduced. In the same fashion, the increments ∆aαβ and ∆bαβ are discretized by

∆ahαβ = ∆xT
e

[
NT
,α N,β + NT

,β N,α

]
xe ,

∆bhαβ = ∆xT
e NT

;αβ n
h .

(207)

For the increments of δaαβ and δbαβ, given in (83) and (86), the approximations

∆δahαβ = δxT
e

[
NT
,α N,β + NT

,β N,α

]
∆xe

∆δbhαβ = − δxT
e

[
NT
,γ (n⊗ aγ) N;αβ + NT

;αβ (aγ ⊗ n) N,γ + NT
,γ a

γδ bαβ (n⊗ n) N,δ

]
∆xe

(208)
then follow. Here, superscript h has been omitted from n, aγ , aγδ and bαβ for simplicity. For
the rest of the paper, all quantities are understood to be discrete even without explicit use of
superscript h.
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10.3 Discretized weak form

In the discrete system the weak form of Sec. 8 takes the form

G =

nel∑
e=1

Ge =

nel∑
e=1

(
Gein +Geint +Gec −Geext

)
, (209)

where Ge• are the elemental contributions to the expressions in (164). Inserting the above
interpolations into (209) leads to

Ge = δxT
e f e , (210)

with
f e := f ein + f eint + f ec − f eext . (211)

The first term,

f ein := −
∫

Ωe
ρNT N da v̇e , (212)

defines the inertia forces acting on the nodes of element Ωe. The second term, f eint := f eσ + f eM ,
defines the internal forces of element Ωe caused by the membrane stress σαβ and the bending
moment Mαβ. The two contributions are given by

f eσ :=

∫
Ωe
σαβ NT

,α aβ da , (213)

and

f eM :=

∫
Ωe

Mαβ NT
;αβ nda . (214)

Following decomposition (169), f eσ can be split into the in-plane and out-of-plane contributions
(Sauer et al., 2014)

f eσin := f eσ − f eσout ,

f eσout := −
∫

Ωe
σαβ bαβ NTnda .

(215)

The third term,

f ec =

∫
Ωe

NT pcnda , (216)

defines the FE contact forces due to the contact pressure pc. The last term, f eext := f ef + f et + f em,
defines the FE forces due to the external loads f , t and mτ . The three pieces are given by

f ef :=

∫
Ωe

NT f da ,

f et :=

∫
∂tΩe

NT t ds ,

f em :=

∫
∂mΩe

NT
,α ν

αmτ nds .

(217)

In the examples considered here, the external forces are zero.

The discretized system is in equilibrium if all nodal forces sum up to zero (see Sec. 11.2 for
details). This force balance is a second order system of ordinary differential equations due to
the inertia term. If inertia is neglected, as is considered in the remainder of this paper, the force
balance is a first order system of ODEs due to the viscosity term. The temporal discretization
of the viscosity term is discussed next.
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10.4 Temporal discretization of the viscosity term

In order to solve the time-dependent problem, time is discretized into a set of nt steps and the
solution is advanced from step tn to tn+1. The viscosity dependant stress σαβvisc = −η ȧαβ can be
discretized at tn+1 by the first order rate approximation

ȧαβn+1 ≈
1

∆tn+1

(
aαβn+1 − a

αβ
n

)
, (218)

where •n := •(tn) and ∆tn+1 := tn+1 − tn. At the new step tn+1, the problem is then solved
implicitly for the current nodal positions xI(tn+1), given the previous positions xI(tn). The
reference configuration is taken as the initial configuration at time t0 = 0, i.e. XI = xI(t0).
This temporal discretization approach corresponds to the implicit Euler scheme.

10.5 Linearization

The resulting non-linear equations at the current time step are solved with the Newton-Raphson
method. This requires the linearization of the discretized weak form. The most important
contribution is the linearization of the internal virtual work. The linearization of inertia and
the external forces is not required for the later examples, and they are therefore omitted here.
The interested reader can find them in Duong et al. (2017). The linearization of the contact
forces can be found in the contact literature, e.g. see Sauer and De Lorenzis (2013) and Sauer
and De Lorenzis (2015).

According to (173) and (133), the linearization of Geint (in the absence of the incompressibility
constraint) leads to

∆Geint =

∫
Ωe0

(
cαβγδ 1

2δaαβ
1
2∆aγδ + dαβγδ 1

2δaαβ ∆bγδ

+ eαβγδ δbαβ
1
2∆aγδ + fαβγδ δbαβ ∆bhγδ

+ Jσαβ 1
2∆δaαβ + JMαβ ∆δbαβ

− Jη

4∆t
δaαβ

[(
aαβ − aαβn

)
aγδ + 2aαβγδ

]
∆aαβ

)
dA ,

(219)

where subscript n + 1 has been omitted. The tangent matrices cαβγδ, dαβγδ, eαβγδ and fαβγδ

have been given in Sec. 7.4. The last term arises from the viscosity approximation of (218). In
can be absorbed into cαβγδ if one replaces

cαβγδ ← cαβγδ − Jη

∆t

[(
aαβ − aαβn

)
aγδ + 2aαβγδ

]
. (220)

Using (135), and exploiting the minor symmetries in the tangent matrices, one finds

cαβγδ 1
2δaαβ

1
2∆aγδ = cαβγδ δxT

e NT
,α (aβ ⊗ aγ) N,δ ∆xe ,

dαβγδ 1
2δaαβ ∆bγδ = dαβγδ δxT

e NT
,α (aβ ⊗ n) N;γδ ∆xe ,

eαβγδ δbαβ
1
2∆aγδ = eαβγδ δxT

e NT
;αβ (n⊗ aγ) N,δ ∆xe ,

fαβγδ δbαβ ∆bγδ = fαβγδ δxT
e NT

;αβ (n⊗ n) N;γδ ∆xe ,

(221)

such that
∆Geint = δxT

e

[
keσσ + keσM + keMσ + keMM + keσ + keM

]
∆xe , (222)
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with

keσσ :=

∫
Ωe0

cαβγδ NT
,α (aβ ⊗ aγ) N,δ dA ,

keσM :=

∫
Ωe0

dαβγδ NT
,α (aβ ⊗ n) N;γδ dA ,

keMσ :=

∫
Ωe0

eαβγδ NT
;αβ(n⊗ aγ) N,δ dA ,

keMM :=

∫
Ωe0

fαβγδ NT
;αβ (n⊗ n) N;γδ dA ,

(223)

and

keσ =

∫
Ωe

NT
,α σ

αβ N,β da ,

keM = keM1 + keM2 + (keM2)T ,

(224)

and

keM1 := −
∫

Ωe
bαβM

αβ aγδ NT
,γ (n⊗ n) N,δ da ,

keM2 := −
∫

Ωe
Mαβ NT

,γ (n⊗ aγ) N;αβ da .

(225)

The first four ke are the material tangent matrices of element Ωe. In order for those to be
positive definite, stability criterion (138) needs to be satisfied. keσ and keM are the geometric
tangent matrices of element Ωe.

10.6 C1-continuous shape functions

As noted before, the FE shape function have to be at least C1-continuous everywhere in the
domain, including element boundaries. This property is provided by the shape functions used
in isogeometric analysis (Hughes et al., 2005; Cottrell et al., 2009). An example are NURBS
(Non-uniform rational B-splines). Thanks to the Bézier extraction operator Ce introduced by
Borden et al. (2011), the usual finite element structure can be used for NURBS basis functions.
The NURBS shape function of node (= control point) A is given by

NA(ξα) =
wA N̂

e
A(ξα)∑ne

A=1wA N̂
e
A(ξα)

. (226)

Here, ne is the number of control points defining element Ωe, wA is a weight, and N̂ e
A is the

B-spline basis function expressed in terms of Bernstein polynomials according to

N̂e(ξα) = Ce
1 B(ξ1)⊗Ce

2 B(ξ2) , (227)

with N̂ e
A being the corresponding entries of matrix N̂e. Further details can be found in Borden

et al. (2011). Fig. 6 shows the basis function N̂ e
A for a one-dimensional example with five control

points. The tensor-based structure of (227) provides a simple extension to two dimensions, as
long as the surface S can be globally defined from a rectangular parameter domain. If this
is not the case, alternatives exists. One possibility is to use T-spline basis functions (Scott
et al., 2011). Another option is to construct the surface from multiple NURBS patches (e.g. see
the example in Fig. 16). In this case, the relative rotation between neighboring patches has
to be suppressed. This is discussed in the following section. It is also possible to apply local
refinement to the patches (Johannessen et al., 2014; Zimmermann and Sauer, 2017).
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Figure 6: The B-spline basis functions for a patch of three elements and five control points
(Corbett, 2016).

10.7 Patch interfaces

To constrain rotations between patches, the constraint potential

Πn =

∫
L0

ε

2
(n− ñ) · (n− ñ) dS (228)

is added to the formulation. L0 denotes the patch interface in the reference configuration, ε is a
penalty parameter, and n and ñ are the normal vectors on the two sides of the patch interface.
The variation, linearization and FE discretization of (228) is discussed in Duong et al. (2017).
Careful implementation of the approach leads to no loss in accuracy compared to single patches
as Fig. 7 shows.
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Figure 7: Pure bending of a flat sheet (cf. Sec. 9) considering: a. single patch with regular
mesh, b. single patch with skew mesh, c. two patches with regular mesh, and d. two patches
with skew mesh. e. Deformed configuration coloured by the relative error in mean curvature H.
f. L2 error of the solution w.r.t. mesh refinement (Duong et al., 2017).
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11 Mixed finite elements

For the area-incompressible case of Eq. (142), the Lagrange multiplier q and the corresponding
weak form equation have to be discretized as well. This is discussed in the following (Sec. 11.1)
using LBB-conforming finite elements (Sec. 11.3). The resulting solution procedure is presented
in Sec. 11.2 using the normalization scheme of Sec. 11.4

11.1 Discretization of the area constraint

The Lagrange multiplier is approximated by the interpolation

qh = L qe , (229)

analogously to the deformation in Eq. (197). Here L := [L1, ..., Lme ] is a (1×me) array contain-
ing the me nodal shape functions LI = LI(ξ

α) of surface element Ωe, and qe := [q1, ...., qme ]
T

contains the me nodal Lagrange multipliers of the element. It follows that

δqh = L δqe , (230)

such that weak form (166) becomes

Gg =

nel∑
e=1

Geg , (231)

where
Geg = δqT

e ge , (232)

with

ge :=

∫
Ωe0

LT g dA . (233)

11.2 Solution procedure

The mixed problem is characterized by the two unknown fields x and q, or their discrete
counterparts x and q. The combined weak form of the discrete problem is given by

δxT f(x,q) + δqT g(x) = 0 , ∀ δx ∈ Vh & δq ∈ Qh , (234)

which follows from adding the elemental contributions of Ge and Geg given in (210) and (232).
Here x, q, δx and δq are global vectors containing all nodal deformations, Lagrange multipliers
and their variations. Vh and Qh are the discrete counterparts to spaces V and Q. The global
vectors f and g are assembled from the elemental contributions f eint, f ec , f eext and ge by adding
corresponding entries. Eq. (234) is satisfied if f = 0 and g = 0 at nodes where no Dirichlet BC
apply. These two nonlinear equations are then solved with Newton’s method for the unknowns
x and q.

If no constraint is present (like in model (140)), the parts containing q and g are simply skipped.
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11.3 LBB condition

For mixed FE problems, the discretization of x and q cannot be chosen independently. Instead,
xh and qh should satisfy the LBB-condition8

inf
qh∈Qh

sup
vh∈Vh

∫
S q

h divs v
h dA

‖vh‖H1 ‖qh‖L2

= γh ≥ γ > 0 (235)

(Babuška, 1973; Bathe, 1996). For the presented shell discretization, the inf-sup value γh

corresponds to the smallest eigenvalue of

Gφ = λSφ , (236)

(Bathe, 2001), where
G := kT

g T−1 kg ,

kg :=

∫
Sh

LTaα ·N,α da ,

T :=

∫
Sh

LTL da ,

S :=

∫
Sh

(
NTN + aαβ NT

,αN,β

)
da ,

(237)

and (λ,φ) denotes the eigenvalue/eigenvector pair. Eigenvalue problem (236) is defined on the
entire system, and hence the integrals are taken over the entire surface Sh and the arrays N
and L now extended to all nodes. The LBB-condition can be satisfied if x is interpolated by
C1-continuous, bi-quadratic NURBS and q is interpolated by C0-continuous, bi-linear Lagrange
shape functions (Loc et al., 2013). This is demonstrated in Fig. 8. If the LBB-condition is
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Figure 8: Cook’s membrane test for mixed displacement/pressure FE (here for NURBS-based
bi-quadratic displacement and Lagrange-based bi-linear pressure interpolation): initial configu-
ration (a.), deformed configuration (b.), inf-sup value (c.). The left boundary is fully clamped,
while on the right boundary a distributed force is applied considering two cases: only an in-
plane force (‘Cook’s membrane’) and a force with an out-of-plane component (‘Cook’s shell’).
Area-incompressibility together with shear model ‘A-st’ with µ̄ = 5 is considered. The color
in the middle figure shows the Lagrange multiplier. Since the inf-sup value is bounded the
formulation is LBB-stable.

violated, oscillations in the Lagrange multiplier appear. Such oscillations do not appear in this
example. Also the multi-patch example in Sec. 13.2 does not exhibit such oscillations if it is

8Named after Ladyzhenskaya, Babuška & Brezzi
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discretized by the mixed approach described above. However, If a penalty regularization of
constraint (76) is used, oscillations appear as the penalty parameter (i.e. the bulk modulus K)
is increased (Sauer et al., 2017).

11.4 Normalization

For a numerical implementation, the preceding expressions need to be normalized. For this
purpose a length scale L0, time scale T0 and force F0 are chosen, and used to normalize all
lengths, times and forces in the system. Velocities, surface densities, surface pressures, mem-
brane stiffness and membrane viscosity are then normalized by the scales

v0 :=
L0

T0
, ρ0 :=

F0T
2
0

L3
0

, p0 :=
F0

L2
0

, µ0 :=
F0

L0
, η0 :=

F0T0

L0
. (238)

Weak form (234) can then be expressed in the normalized form

δx̄T f̄(x̄, q̄) + δq̄T ḡ(x̄) = 0 , (239)

where a bar denotes normalization with the corresponding scale from above, e.g.

f̄ eσ :=

∫
Ω̄e
σ̄αβ N̄T

,α aβ dā , (240)

with σ̄αβ = σαβ/µ0, N̄,α = N,α L0 and dā = da/L2
0. By choice, parameter ξα is supposed

to carry units of length, so that aα and aαβ become dimensionless. All the other quantities
appearing in (234) are normalized in the same fashion.

If F0 is defined through k = F0L0 (the bending modulus k has the unit [force × length]), the
system is effectively normalized by k. The non-dimensional material parameters thus are

k̄ = 1 ,

k̄g = kg/k ,

K̄ = K L2/k ,

µ̄ = µL2/k ,

ε̄ = ε L/k ,

(241)

while the normalization of stress and moment components become

q̄ = q L2/k ,

σ̄αβ = σαβ L2/k ,

M̄αβ = Mαβ L/k .

(242)

12 Lipid bilayer stabilization

As noted in Secs. 1, 7.4 and 10.5, the lipid bilayer is unstable for quasi-static computations
(i.e. when no inertia and viscosity is considered). There are two principal ways to stabilize
the system without modifying and affecting the original problem. They are discussed in the
following two sections and then summarized in Sec. 12.3. The presentation is taken from Sauer
et al. (2017).
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12.1 Adding stiffness

One way to stabilize the system is to add a stabilization stress σαβsta to σαβ in order to provide
additional stiffness. This stress can be defined from a (convex) shear energy or from numerical
viscosity. An elegant and accurate option is to add the stabilization stress only to the in-plane
contribution (170) while leaving the out-of-plane contribution (171) unchanged. The advantage
of this approach is that the out-of-plane part, responsible for the shape of the bilayer, is not
affected by the stabilization, at least not in the continuum limit of the discretization. There are
several different ways to define the stabilization stress, and they are grouped into two categories.
An overview of all the options is then summarized in Tab. 2.

12.1.1 In-plane shear and bulk stabilization

The first category goes back to Sauer (2014), who used it to stabilize liquid membranes governed
by constant surface tension. The stabilization stress for such membranes requires shear and bulk
contributions. Those are given for example by the stabilization stress

σαβsta = µ/J
(
Aαβ − aαβ

)
, (243)

based on numerical stiffness, and

σαβsta = µ/J
(
aαβpre − aαβ

)
, (244)

based on numerical viscosity. Here aαβpre denotes the value of aαβ at the preceding computational
step. These stabilization stresses are then only included within Eq. (170) and not in Eq. (171),
and the resulting two stabilization schemes are denoted ‘A’ (for (243)) and ‘a’ (for (244))
following Sauer (2014). This reference shows that scheme ‘a’ is highly accurate and performs
much better than scheme ‘A’. It also shows that applying the stabilization stresses (243) and
(244) only to the in-plane part is much more accurate than applying it throughout the system
(i.e. in both Eqs. (170) and (171)), which we denote as schemes ‘A-t’ and ‘a-t’.

12.1.2 Sole in-plane shear stabilization

If the surface tension is not constant, as in the lipid bilayer models introduced above, only shear
stabilization is required. A suitable stabilization stress can be derived from the shear energy

Ψ0 =
µ

2

(
Î1 − 2

)
, (245)

where Î1 = I1/J (Sauer et al., 2017). Eqs. (124) and (116) then give

ταβsta =
µ

J

(
Aαβ − I1

2
aαβ
)
. (246)

As before, this stress will only be applied to Eq. (170) and not to Eq. (171), even though it has
been derived from a potential and should theoretically apply to both terms. Following earlier
nomenclature, this scheme is denoted by ‘A-s’. Replacing Aαβ by aαβpre in (246) gives

ταβsta =
µ

J∗

(
aαβpre −

I∗1
2
aαβ
)
, (247)

with J∗ :=
√

det aαβ
/

det apre
αβ and I∗1 := aαβpre aαβ, which is an alternative shear-stabilization

scheme based on numerical viscosity. It is denoted ‘a-s’. If stresses (246) and (247) are applied
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throughout the system (i.e. to both (170) and (171)), the corresponding schemes are denoted
‘A-st’ and ‘a-st’.

If the shell is (nearly) area-incompressible the two stabilization methods of Sec. 12.1.1 and 12.1.2
can behave identical, as can be seen by the example in Sec. 12.4.

12.2 Normal projection

The second principal way to stabilize the system consists of a simple projection of the formula-
tion onto the solution space defined by the normal surface direction. This step can be applied
directly to the discretized formulation as was proposed by Sauer (2014). According to this,
for the discrete system of linear equations for displacement increment ∆u, which is given by
K ∆u = −f , the reduced system for increment ∆ured = P ∆u is simply obtained as

Kred ∆ured = −fred , Kred := P K PT , fred := P f , (248)

where

P :=


nT1 0T · · · 0T

0T nT2 · · · 0T

...
...

. . .
...

0T 0T · · · nTnno

 (249)

is a projection matrix defined by the nodal normal vectors nI . Since this method can lead
to distorted FE meshes, a mesh update can be performed by applying any of the stabilization
techniques discussed above. If this is followed by a projection step at the same load level, a
dependency on parameter µ is avoided.

As noted in Sauer et al. (2017), the projection approach does not work very well for surfaces
with (near) area-incompressibility, but it does work very well for area-compressible surfaces
(Sauer, 2014).

12.3 Summary of the stabilization schemes

The nine stabilization schemes presented above are summarized in Tab. 2. They can be grouped

class scheme stab. stress σαβsta/µ application of σαβsta dependence

A A
(
Aαβ − aαβ

)
/J only in (170) only on µ

A-t
(
Aαβ − aαβ

)
/J in (170) & (171) only on µ

A-s
(
Aαβ − 1

2I1 a
αβ
)
/J2 only in (170) only on µ

A-st
(
Aαβ − 1

2I1 a
αβ
)
/J2 in (170) & (171) only on µ

a a
(
aαβpre − aαβ

)
/J only in (170) on µ and nt

a-t
(
aαβpre − aαβ

)
/J in (170) & (171) on µ and nt

a-s
(
aαβpre − 1

2I
∗
1 a

αβ
)
/J∗2 only in (170) on µ and nt

a-st
(
aαβpre − 1

2I
∗
1 a

αβ
)
/J∗2 in (170) & (171) on µ and nt

P P 0 – on nodal nI

Table 2: Summary of the stabilization schemes presented in Secs. 12.1 and 12.2 (Sauer et al.,
2017).

into three classes: A, a and P. The schemes of class A depend only on µ but require this value
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to be quite low. The schemes of class a also depend on the number of computational steps, nt. If
this number is high, the schemes provide stiffness without adding much stress. The shell is then
stabilized without modifying the solution much, even when µ is high. Scheme ‘P’ depends on
the nodal projection vector nI , which is usually taken as the surface normal. The performance
of the different stabilization schemes is investigated in the following section.

12.4 Performance of the stabilization schemes

Two examples are considered in order to examine the performance of the proposed stabilization
schemes. They are based on the two analytical examples presented in Sec. 9.

12.4.1 Pure bending and stretching of a flat sheet

The first example considers the pure bending and stretching of a flat sheet. The analytical
solution for this problem is given in Sec. 9.1. The problem is solved numerically using the
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Figure 9: Pure bending and stretching of a sheet (Sauer et al., 2017): a. initial FE configuration
and boundary conditions (discretized with m = 8 elements); b. distributed boundary moment
M0(t) and normal traction N0(t) as obtained analytically and computationally for the area-
incompressible model (142).

computational setup shown in Fig. 9. The FE mesh is discretized by m elements along X. The
parameter t is introduced to apply the rotation Θ = tπ/6 and stretch λ2 = 1+ t/2 by increasing
t linearly from 0 to 1 in nt steps, where nt is chosen as a multiple of m. The mean curvature then
follows as H = Θ/(2λ1S). Numerically, the rotation is applied according to (228) considering
the penalty parameter ε = 100mk/L. Fig. 9b shows the FE solution and analytical solution
for the bending moment M0(t) and the stress N0(t), normalizing M0 by k/L and N0 by k/L2.

Next, the accuracy of the different stability schemes is studied in detail by examining the L2-
error of the solution, defined by

L2 :=

√
1

SL

∫
S0
‖uexact − uFE‖2 dA , (250)

and the error in M and N , defined by

EMN :=
|Mexact −MFE|

Mexact
+
|Nexact −NFE|

Nexact
, (251)
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where MFE and NFE are the computed mean values along the respective boundaries. The
first error is a measure of the kinematic accuracy, while the second is a measure of the kinetic
accuracy. Fig. 10 shows the two errors for the area-incompressible model of Eq. (142). Looking
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Figure 10: Pure bending and stretching of a sheet (Sauer et al., 2017): accuracy for the area-
incompressible model (142): a. L2-error vs. m considering stabilization classes A and a with
µ̄ = 10 and nt = 12.5m; b. L2-error vs. µ considering stabilization class A with m = 32;
c.–d. same as a.–b., but now for error EMN . Considered is Θ/2 = π/3 and λ2 = 1.5.

at the L2-error, schemes ‘A-t’, ‘A-st’, ‘a-t’ and ‘a-st’ perform best. In case of error ENM ,
schemes ‘a’ and ‘a-s’ perform best. Class A generally converges with µ, but it may not converge
with the number of elements for high values of µ. Interestingly, the L2-error of scheme ‘A-t’
and ‘A-st’ is not affected by µ, as schemes ‘A’ and ‘A-s’ are. For sufficiently low µ (for m = 32
about µ̄ < 10−3), the accuracy of class A (both in L2 and EMN ) reaches that of class a and
then only improves with mesh refinement. Class A with low µ may even surpass class a with
high µ. But generally, class a is more accurate and robust (as µ does not need to be very small).
There is no clear favorite in class a for this test case.

As the plots show, not a single stabilization scheme stands out here and the accuracy depends
both on the model and the error measure. In general, all schemes are suitable to solve the
problem. If class A is used, the value of µ needs to be suitably low. For class a even large
values for µ can be used. In this example it is even possible to set µ = 0 in the code. This works
since the effective shear stiffness according to (151) is positive here, i.e. µeff = 3JkH2/2 > 0.
For other problems µeff can be negative, and stabilization is required.
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12.4.2 Inflation of a sphere

The second example considers the inflation of a spherical cell. Contrary to the previous example,
the FE mesh now also contains interfaces between NURBS patches. Since the surface area
increases during inflation, potential (140) is considered. Fig. 11 shows the computational setup
of the problem. The computational domain consists of a quarter sphere discretized with four

a. b.

Figure 11: Sphere inflation (Sauer et al., 2017): a. initial FE configuration and boundary
conditions (for mesh m = 8); b. current FE configuration for an imposed volume of V̄ = 2
compared to the initial configuration; the colors show the relative error in the surface tension
Tν .

NURBS patches. The quarter sphere contains 3m2/2 elements where m is the number of
elements along the equator of the quarter sphere. At the boundaries and at the patch interfaces
C1-continuity is enforced using (228) with ε = 4000mk/R. The area bulk modulus is taken as
K = 5k/R2, while kg is taken as zero. Two cases are considered: H0 = 0 and H0 = 1/R. Fig. 12
shows that the computational p(V )-data converge to the exact analytical result of (195). Here
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Figure 12: Sphere inflation (Sauer et al., 2017): a. pressure-volume relation; b. FE convergence
for the different stabilization schemes.

the pressure error

ep =
|pexact − pFE|

pexact
(252)
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is examined for H0 = 1/R and V̄ = 2 considering the 9 stabilization schemes of Tab. 2 with
µ̄ = 0.01 for class A and µ̄ = 1 and nt = 5m for class a. For schemes ‘A’, ‘A-s’, ‘A-st’, ‘a’, ‘a-s’,
‘a-st’ and ‘P’ this error converges nicely (and is indistinguishable in the figure). Only schemes
‘A-t’ and ‘a-t’ behave significantly different. They introduce further errors that only converge if
µ is decreased or nt is increased. The reason why all other schemes have equal error, is that here
the error is actually determined by the penalty parameter ε used within patch constraint (228).
The error stemming from the stabilization methods (apart from ‘A-t’ and ‘a-t’) is insignificant
compared to that. It is interesting to note that ‘A-st’ and ‘a-st’ perform much better than
‘A-t’ and ‘a-t’, even though no shear is present in the analytical solution. ‘A-st’ and ‘a-st’ can
therefore be considered as the best choices here, since they are the most efficient schemes to
implement.

We finally note that for a sphere µeff = JkH(H − H0), where H = −1/r. Thus µeff > 0 for
H < H0, which is the case here.

13 Numerical examples

This section presents three numerical examples based on the computational formulation pre-
sented in the preceding three sections. The first two examples are taken from Sauer et al. (2017).
The third example is new.

13.1 Bilayer tethering

If a surface point of the bilayer is pulled in normal direction n, a thin tether forms, e.g. see
Cuvelier et al. (2005). In order to simulate the thether drawing process, the setup of Fig. 13 is
considered. The bilayer membrane is modeled as a circular, initially flat disc with initial radius

a. b.

Figure 13: Bilayer tethering (Sauer et al., 2017): a. boundary conditions and b. coarse FE mesh
of the initial configuration.

L. The effect of the surrounding membrane is captured by the boundary tension σ (measured
w.r.t. the current boundary length). The surface is described by material model (140). L and
k are used for normalization. The remaining material parameters are chosen as kg = −0.7 k
and K = 20,000 k/L2. The cases σ ∈ {100, 200, 400, 800}k/L2 are considered. Stabilization
scheme ‘A-s’ is used with µ = 0.1 k/L2. The bilayer is clamped at the boundary, but free to
move in the in-plane direction. The traction t = σν is imposed and applied numerically via
(217.2). Even though t is constant during deformation, the boundary length ds appearing in f et
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changes and has to be linearized (Sauer, 2014). At the center, the displacement u is imposed
on the initially flat, circular surface.

Fig. 13b also shows one of the chosen finite element discretizations of the initial configuration.
Quadratic, NURBS-based, C1-continuous finite elements are used. A finer discretization is
chosen at the center, where the tube is going to form. The chosen NURBS discretization
degenerates at the center, such that the C1-continuity is lost there. It is regained if displacement
u is applied not only to the central control point but also to the first ring of control points
around the center. This ensures that the tangent plane remains horizontal at the tip. Likewise,
a horizontal tangent is enforced at the outer boundary by fixing the height of the outer two
rings of control points.

Fig. 14 shows the deformed surface for u = L with σ̄ = 100 and σ̄ = 800. Further cases are

a. b.

Figure 14: Bilayer tethering (Sauer et al., 2017): Results for a. σ = 100k/L2 and b. σ = 800k/L2;
the colors show the mean curvature H normalized by L−1.

shown in Sauer et al. (2017). The surface tension affects the slenderness of the appearing tube.
Derényi et al. (2002) showed from theoretical considerations9 that the tube radius is

a =
1

2

√
k

σ
, (253)

while the steady force during tube drawing is

P0 = 2π
√
σ k . (254)

These values are confirmed by the computations, as is shown in Fig. 15. The left side shows the
force-displacement relation during drawing. Oscillations appear in the numerical solution due
to the mesh discretization error. They are more pronounced for more slender tubes, as the black
curve in Fig. 15a shows. They disappear upon mesh refinement, as the solution converges. The
convergence of P0 for σ = 200k/L2 and u = L (= 28.28a) is shown in Fig. 15b by examining
the error

e(PFE
0 ) :=

|P ref
0 − PFE

0 |
P ref

0

, (255)

where P ref
0 is the FE solution for m = 256 and µ = 0. Different values of stability parameter µ

are considered. Even the case µ = 0 works, due to the inherent shear stiffness of the Helfrich
model given in (151). In all cases, the error reported in Fig. 15b is assessed by comparison to
the finest FE mesh. From this one can find that the analytical solution itself has an error of
about 0.2%, due to its underlying assumptions.

9Assuming that the tube is sufficiently long and can be idealized by a perfect cylinder.
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Figure 15: Bilayer tethering (Sauer et al., 2017): a. load-displacement curve; b. FE convergence.

13.2 Bilayer budding

The adsorption of proteins can lead to shape change in lipid bilayers (Zimmerberg and Kozlov,
2006; McMahon and Gallop, 2005; Kozlov et al., 2014; Shi and Baumgart, 2015). The lipid
membrane deforms whenever its curvature is incompatible with the inherent structure of a
protein, giving rise to a spontaneous curvature. In order to study this, a hemi-spherical cell
with initial radius R and curvature H = −1/R is considered. The cell surface is clamped
at the boundary, but free to expand radially as is shown in Fig. 16. On the top of the cell,

Figure 16: Bilayer budding (Sauer et al., 2017): Considered setup showing the initial configura-
tion, FE discretization and boundary conditions. The surface normal at the boundary is fixed
and the boundary nodes are only free to move in the radial direction.

within the circular region of radius 0.2R, a constant spontaneous curvature H̄0 is prescribed in a
Lagrangian fashion, such that the proteins causing H0 move along with the lipid bilayer and no
diffusion occurs. Unless otherwise specified, model (140) is used with the material parameters
k̄g = −0.7 and K̄ = 10,000, while k and R are used for normalization according to Sec. 11.4
and remain unspecified. Further, stabilization scheme ‘A-s’ is used with µ̄ = 0.01. The FE
discretization shown in Fig. 16, consisting of five NURBS patches, is used. Where the patches
meet, constraint (228) is added to ensure rotational continuity and moment transfer. Constraint
(228) is also used to fix the surface normal at the boundary. The actual FE mesh is much finer
than in Fig. 16 and uses 12288 elements (64 times more than in the figure).

In past numerical studies, axisymmetric bud shapes have been reported, e.g. Walani et al. (2015).
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These shapes should be a natural solution due to the axisymmetry of the problem. However, as
is shown below, non-axisymmetric solutions are also possible, and can be energetically favorable,
indicating that axisymmetric solutions can become unfavored. This is illustrated by considering

case bud shape H0 region stabilization µ̄ in-plane stress

a axisym. circle A-s 0.01 hydro-static
b general ellipse A-st 10 elastic shear
c general ellipse a-st 1250 viscous shear

Table 3: Bilayer budding: different physical test cases considered.

the three different test cases listed in Tab. 3 and discussed in the following:

Case a. (Fig. 17a): Here, the deformation is constrained to remain axisymmetric (i.e. the FE
nodes are only allowed to move in radial direction). The resulting deformation at H̄0 = −25 is
shown in Fig. 17a.

a. b. c.

Figure 17: Bilayer budding (Sauer et al., 2017): a. axisymmetric case, b. shear stiff case, and
c. viscous case at H̄0 = −25. The colors show the mean curvature H̄.

Case b. (Fig. 17b): Here, the deformation is not constrained to remain axisymmetric. Con-
sequently, a non-axisymmetric bud shape appears. To induce it, H0 is prescribed within an
imperfect circle, i.e. an ellipse with half-axes a = 0.22R and b = 0.18R. It is energetically
favorable for the bud to evade into an elongated plate-like shape (see Fig. 17b). To counter
this, shear resistance is provided by elastic shear stresses according to model ‘A-st’10.

Case c. (Fig. 17c): Here, the deformation is also not constrained to remain axisymmetric.
H0 is again prescribed within an imperfect circle (a = 0.22R and b = 0.18R). But now shear
resistance is provided through physical viscosity. This is captured through model ‘a-st’ using
the relation η = µ∆t with µ̄ = 1250 and a load stepping increment for H0 of ∆H̄0 = 0.02 (such
that η = 25k/L3/Ḣ0, where Ḣ0 is the rate with which the spontaneous curvature is prescribed).
As Fig. 17c shows, the bud splits into two separate buds.

In Sauer et al. (2017) movies can be found that animate the bud growth for the three cases. One
of the advantages of the proposed finite element formulation is that the surface tension γ can
be studied. This is shown in Fig. 18. As seen the surface tension is not a constant. At extreme

10The shear stresses are now physical and need to be applied both in-plane and out-of-plane.
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a. b. c.

Figure 18: Bilayer budding (Sauer et al., 2017): a. axisymmetric case, b. shear stiff case, and
c. viscous case at H̄0 = −25. The colors show the normalized surface tension γ̄.

values of γ, rupture might occur, depending on the strength of the lipid bilayer. Further details
on bilayer budding are discussed Sauer et al. (2017).

13.3 Bilayer indentation

The preceding two examples show that liquid shells, such as lipid bilayers, exhibit out-of-plane
deformations that are very different to those observed for solid shells. This is also seen during
indentation, which is considered in the following. An initially flat, square bilayer sheet with size
2L × 2L is brought into normal contact with a spherical indenter. The sheet is considered to
be area-extensible such that it can be clamped at the edge. The considered model parameters
are k̄g = −0.83 and K̄ = 7.60 · 105, using stabilization scheme ‘a-s’ with µ̄ = 12.20. Contact is
described by the penalty method, according to which the contact pressure is given by

pc =

{
−εn gn if gn < 0 ,

0 else ,
(256)

where εn is the contact penalty parameter and

gn = (x− x0) · n0 −R0 (257)

denotes the normal gap between sphere and bilayer surface. Here, x ∈ S denotes a surface
point, while R0, x0 and n0 denote radius, center and surface normal of the sphere. In the
example, R̄0 = 0.1 and ε̄n = 7.60 · 108 is used.
Fig. 19 shows the deformation of the bilayer sheet for an indentation depth of 0.4L. The problem
is symmetric, and therefore the finite element computations are performed on one quarter of the
sheet. Along the symmetry boundaries, constraint (228) is used in order to enforce continuity
of n. The continuity of n across the symmetry boundary is confirmed by the inset shown on
the right.
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Figure 19: Indentation of a square bilayer sheet by a spherical indenter. The inset on the right
shows that the surface remains smooth during deformation. Only half of the system is shown.

14 Conclusion

This chapter discusses the computational modeling of lipid bilayers based on thin-shell theory.
Various model ingredients are presented in order to address the challenges of this. Those
ingredients range from theoretical approaches that provide a general description of balance
laws, constitution, kinematics and weak form based on curvilinear coordinates, to computational
methods, such as nonlinear finite element analysis, NURBS-based surface discretizations, LBB-
conforming mixed methods, and shear stabilization. A necessary component of this is the
consistent linearization of the formulation. The proposed formulation is illustrated by several
analytical and numerical examples. The analytical examples are used to examine the behavior
of the proposed shear stabilization schemes. The constitutive behavior of the bilayer is based on
the Helfrich bending model combined with in-plane viscosity and (near) area-incompressibility.
Neglecting inertia leads to a nonlinear PDE that is fourth order in space and first order in time.
The corresponding weak form is second order in space and first order in time. This requires
globally C1-continuous surface discretizations. Those are provided by NURBS-based FE shape
functions together with rotational constraints at patch interfaces.

The generality of the proposed formulation admits many possible extensions. One is the gen-
eralization of the bilayer kinematics to account for tilt and inter-layer sliding. Another is the
consideration of mass-varying systems (Sahu et al., 2017). Further extension are the develop-
ment of surface-ALE formulations, and local mesh refinement in the framework of LR-NURBS
(Zimmermann and Sauer, 2017).
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