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Abstract: A nonlinear beam formulation is developed that is suitable to describe adhesion and
debonding of thin films. The formulation is based on a shear-flexible, geometrically exact beam
theory that allows for large beam deformations. The theory incorporates several aspects that
have not been considered in previous theories before. Two different adhesion mechanisms are
considered here: Adhesion by body forces and adhesion by surface tractions. Corresponding
examples are van der Waals adhesion and cohesive zone models. Both mechanisms induce a
bending moment within the beam that can play an important role in adhesion and debonding
of thin films. The new beam model is discretized within a nonlinear finite element formulation.
It is shown that the new formulation leads to a symmetric stiffness matrix for both adhesion
mechanisms. The new formulation is used to study the peeling behavior of a gecko spatula.
It is shown that the beam model is capable of capturing the main features of spatula peeling
accurately, while being much more efficient than 3D solid models.

Keywords: nonlinear beam theory, cohesive zone modeling, computational contact mechanics,
finite element methods, gecko adhesion, van der Waals interaction

1 Introduction

The adhesion, debonding, and peeling behavior of thin strips and films plays an important
role in many applications. Examples are paints and coatings, adhesive tapes, liquid films, and
adhesive pads of insects and lizards like the gecko spatula pad. Since thin strips are slender,
often also elongated, structures they are natural candidates for the consideration of beam the-
ory. This is the basis of several analytical thin film peeling models that have been formulated
starting with the seminal work of Kendall [1], see for example [2, 3, 4, 5]. Analytical models
are based on simplified assumptions regarding geometry and deformation. Thus they are not
suitable to describe general problems characterized by the nonlinearities of large deformations
and by complex geometries, as they are found in adhesive systems of insects and lizards. In
these cases computational models are indispensable.
The objective of this paper, therefore, is to formulate a computational beam model for adhesion,
debonding, and peeling. Here, we focus on a 2D formulation that is suitable to describe plane
strain conditions of films, or to describe 2D behavior of beams. The considered formulation is
based on the nonlinear, geometrically exact beam theory of Reissner [6], of which a computa-
tional counterpart is discussed in a book by Wriggers [7]. This formulation is generalized to
beams with an initially curved axis and an arbitrary shaped cross section, which may vary along
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the beam. This is also accounted for in the presented contact formulation. The beam model
is extended by two different adhesion formulations: Adhesion by body forces and adhesion by
surface tractions. The first is suitable to describe van der Waals adhesion, the second is suitable
to include cohesive zone models. The formulation presented here is an extension of the van der
Waals-based beam adhesion formulation of Sauer [8]. The new formulation accounts for both
the shear deformation of the beam and a bending moment that is caused by the adhesion forces.
Both these contributions have not been incorporated into a computational beam model before.
It is seen that, combined, the two contributions lead to a symmetric finite element stiffness
matrix. The symmetry is lost if one of the contributions is neglected. This symmetry reflects
the fact that the model can be derived from a potential. The computational model presented
here has been applied by Sauer [9] for studying the peeling behavior of shear-rigid beams with
a rectangular cross section. The purpose of that study was to investigate the material and
adhesion properties of thin peeling films, and to show that the bending stiffness can play a
major role during peeling. It did, however, neither discuss the computational modeling nor the
extension to shear-flexible beams with arbitrary, varying cross sections. This is the purpose of
the present work.
The major advantage of the new formulation is the huge gain in efficiency it offers compared to
adhesion models for 3D solids, like the model of Sauer and Wriggers [10]. To illustrate this, we
compare the new beam formulation with the detailed 3D spatula model of Sauer and Holl [11],
considering a vibration analysis and several peeling cases. It is seen that the beam model is
capable of capturing the behavior of the spatula accurately. For the study, the characteristic
beam properties (centroid, cross section, second moment of area, etc.) need to be determined
from the detailed 3D geometry, which is discussed in detail. Since a van der Waals-based ad-
hesion model leads to a purely normal (i.e. mode I) contact formulation, we also study gecko
adhesion by considering a cohesive zone formulation that can describe tangential (mode II)
debonding. In summary, it is shown that the new formulation is 1) more accurate than previous
beam formulations, 2) consistent with continuum theory, and 3) a highly efficient alternative to
3D solid models.

The remaining sections of this paper are structured as follows. Sec. 2 gives an overview of
the geometrically exact beam theory and shows how various adhesion formulations are adapted
to the beam. Sec. 3 then presents the corresponding finite element formulation for adhesive
beams. Numerical examples are discussed in Sec. 4. These consider the peeling behavior of a
gecko spatula for various loading conditions and compare the beam results with detailed 3D
computations based on solid elements. Sec. 5 concludes this paper.

2 Geometrically exact beam theory

This section presents the model equations governing the mechanical behavior of a thin adhesive
strip. We discuss two different continuum adhesion models and their adaption to beam theory,
focusing first on the internal work, δΠint, and then on the virtual contact work, δΠc.

2.1 Equilibrium equation

For adhesion, the (mechanical) weak form of the equilibrium equation is given by the following
statement [10]: Find an admissible deformation ϕ ∈ U satisfying the principle of virtual work

δΠint + δΠc − δΠext = 0 , ∀ δϕ ∈ Vϕ , (1)
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where δϕ ∈ Vϕ denotes a kinematically admissible virtual deformation. The first term, δΠint,
corresponds to the virtual work of the internal forces, see the following section. The second
term, δΠc, which is discussed in Sec. 2.3, denotes the virtual work of contact and adhesion
forces. The last term, δΠext, denotes the virtual work of any external forces acting on the strip.

2.2 Kinematics and constitution

In the following, we outline the kinematics and constitution of the geometrically exact beam
formulation of Reissner [6], see also [7]. This formulation accounts for the exact kinematics of
large beam deformations and rotations. According to the assumptions of beam theory, only
normal strains, due to axial forces and bending moments, and shear strains, due to shear forces,
are considered. This means that the beam is supposed to be shear-flexible (like the Timoshenko
beam). Further, the cross section of the beam is supposed to remain planar (but not necessarily
normal to the beam axis) during deformation. Fig. 1 shows the nonlinear kinematics of the
deforming beam. As shown, the beam axis is described by the coordinate S in the undeformed

Figure 1: Nonlinear kinematics of the geometrically exact beam.

reference configuration, B0. The deformation of the beam is fully characterized by the three
independent fields u(S), w(S), and ψ(S), which denote the displacement of the beam axis and
the rotation of the cross section (Fig. 1). The fields can be arranged in the vector

d =

uw
ψ

 . (2)

The deformation of the beam is then characterized by

x =

xy
θ

 =

XY
Θ

+

uw
ψ

 = X + d . (3)

This formulation corresponds to the global coordinate system shown in Fig. 1. The angle Θ
corresponds to the initial inclination of the cross section, which may vary along S but must be
perpendicular to the beam axis in the undeformed configuration. This follows from the theory
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of Reissner. Introducing the rotation

Q(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , (4)

the displacement vector, d, can be transformed to the local coordinate systems of the reference
configuration, B0, and the current configuration, B, as

dLoc := Q(Θ)d and dloc := Q(θ)d . (5)

Note that Q(θ) = Q(ψ)Q(Θ). For the sake of simplicity, we define a vector of partial deriva-
tives, d′ := ∂d/∂S. Introducing the transformations

d′Loc := Q(Θ)d′ and d′loc := Q(θ)d′, (6)

the axial strain, ε, the shear strain, γ, and the flexure, κ, of the beam, arranged in the vector
ε = [ε , γ , κ]T , can be either written as [7]

ε = Q(ψ)d′Loc − φ (7)

or equivalently as
ε = d′loc − φ , (8)

where φ is defined as

φ =

1− cosψ
sinψ

0

 . (9)

Expression (8) provides a geometrically exact definition of the beam strains w.r.t. the local
coordinate system. The strain definition according to Eq. (8) is the logical extension of the
infinitesimal beam kinematics to large deformations and rotations.

The local axial force, N , shear force, V , and bending moment, M , of the beam follow from
the chosen constitutive model. Here, we consider linear elastic material behavior, so the cross-
sectional force S = [N , V , M ]T is given by

S = Dε (10)

with

D =

EA 0 0
0 GAs 0
0 0 EI

 . (11)

The diagonal entries of D describe the axial, shear, and bending stiffness of the beam. Here,
E and G denote Young’s modulus and the shear modulus. Further, A and I denote the cross
section area and second moment of area. In general, these may change along the beam axis.
As denotes the shear-corrected cross section area, which is As = 5/6A for a rectangular and
As = 9/10A for a circular cross section. In general, it can be obtained from Eq. (104), discussed
in Appendix C. A linear material model, like (10), is acceptable as long as the strains ε and γ
remain small. The displacements themselves can become arbitrarily large. The internal virtual
work, δΠint, is given by the virtual work done by the sectional forces, S, integrated along the
undeformed beam axis, i.e.

δΠint =

∫
L
δεTS dS . (12)
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Here, δε denotes the virtual strains, which are obtained from Eq. (8) as

δε = Q(θ) δd′ +

[
∂Q(ψ)

∂ψ
Q(Θ)d′ − ∂φ

∂ψ

]
δψ . (13)

Carrying out the differentiation, this can be written as

δε = δd′loc +A δdloc , (14)

with

A =

0 0 w′loc − sinψ
0 0 −u′loc − cosψ
0 0 0

 (15)

and
δdloc := Q(θ) δd , δd′loc := Q(θ) δd′ . (16)

2.3 Contact formulation

This section discusses the formulation of adhesive contact, considering either bulk adhesion or
adhesion by surface tractions. For both, the substrate is supposed to be much stiffer than the
peeling strip, such that the deformation of the substrate can be omitted.

2.3.1 Bulk adhesion

In the case of adhesion by body forces we have [10]

δΠc = −
∫
B0
δϕ · β0 b̄c dV , (17)

where β0 b̄c dV denotes an infinitesimal force acting on the undeformed volume element dV .
The term β0 describes the particle density of dV . For van der Waals adhesion, the body forces
bc := β0 b̄c can be derived from the Lennard-Jones potential considering analytical half-space
integration [10]. This gives

bc = bc(r)np , bc(r) =
AH

2πr40

[
1

5

(r0
r

)10
−
(r0
r

)4]
, (18)

where r0 denotes the equilibrium distance of the Lennard-Jones potential and AH denotes the
Hamaker constant. According to Eq. (18), bc is parallel to the normal vector, np, of the substrate
surface, ∂Bs. The body force field, given in Eq. (18), needs to be integrated over the height of
the beam. This leads to a distributed line force, T c, and bending moment, Mc, acting along the
beam axis as shown in Fig. 2. We assume in the following that the initial inclination of the beam
axis, Θ, is approximately equal to the inclination of ∂Bs. By choice, the substrate is oriented
such that Θ = 0. The left hand side of Fig. 2 shows the beam in a general configuration. The
integration is performed over an infinitesimal slice of the beam cross section, which is rotated
by the angle ψ.3 The right hand side of Fig. 2 shows the undeformed configuration of the cross
section slice considered at the same position u = [u , w]T and rotation ψ as the deformed slice.
The infinitesimal volume element, dV , can be written as

dV =
W dr dS

cosψ
, (19)

3Due to the shear deformation of the beam, ψ is not equal to the rotation of its lower surface.
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Figure 2: Distributed line force T c and bending moment Mc induced by bulk adhesion. By
choice, ∂Bs is oriented such that Θ = 0.

where dS is the thickness of the cross section slice, dr is a differential element along np, and W
is the width of the beam. In general, W may vary along both r and S. Nevertheless, since the
force field (18) decays very fast for increasing distance [10] we consider the width of the lower
strip surface here, W = W (S). Integrating bcW along r gives

T̂c ≈W
∫ r2

r1

bc(r) dr , (20)

with

r1(ψ) = rM −
H

2
cosψ , r2(ψ) = rM +

H

2
cosψ , (21)

according to Fig. 2. The term H = H(S) is the strip height at S, see Remark 1. The integral
is easily evaluated as

T̂c = T (r1)− T (r2) , (22)

with

T (r) =
AHW

2πr30

[
1

45

(r0
r

)9
− 1

3

(r0
r

)3]
. (23)

For convenience, the quantities

Tc :=
T̂c

cosψ
, (24)

and
T c := Tcnp (25)

are introduced. Thus one can write ∫
B0
bc dV ≈

∫
L
T c dS (26)

for the beam. As seen, the sectional rotation, ψ, leads to an increase of the distributed line
force, T c. Due to the inclination of the slice, the adhesion forces induce a bending moment, Mc,
as shown in the figure. It is caused by the eccentricity, e = (rM − r) tanψ, of the body force
field, which is not uniform across the height of the beam. Integrating the product e bcW along r
then defines the moment

Mc ≈W
∫ r2

r1

(rM − r) tanψ
bc(r)

cosψ
dr . (27)
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Evaluating the integral yields

Mc :=
(
rM T̂c − r0 T ∗c

)tanψ

cosψ
, (28)

with

T ∗c = W

∫ r2

r1

r

r0
bc(r) dr = T ∗(r1)− T ∗(r2) (29)

and

T ∗(r) =
AHW

2πr30

[
1

40

(r0
r

)8
− 1

2

(r0
r

)2]
. (30)

Altogether, it is seen that due to the inclination of the beam, three effects have appeared:

1. An increase of the adhesion force, T c, by the factor 1/ cosψ, which has the same effect as
an actual increase of the film density,

2. an additional bending moment, Mc, and

3. a coupling between the adhesion forces and the shear deformation, γ, via the angle ψ
appearing in Eq. (8). This last contribution will lead to a fully symmetric finite element
tangent matrix as is seen in Section 3.

The virtual contact work, δΠc, now corresponds to the virtual work done by the sectional
force, T c, and sectional moment, Mc, distributed along the beam, i.e.

δΠc = −
∫
L
δdT

[
T c

Mc

]
dS . (31)

If no external forces are considered, as is done in the examples of the following sections4, the
external virtual work is zero, i.e. δΠext = 0. Together with Eq. (12), the weak form governing
the beam is then given by∫

L
δεTS dS −

∫
L

(
δu · T c + δψ ·Mc

)
dS = 0 , ∀ δd ∈ Vd , (32)

where
[
δuT , δψ

]
= δdT .

Remarks:

1. Due to the fast decay of T (r) from Eq. (23) it is convenient to set r2 →∞ if the considered
strip is thicker than a few nanometers [9]. The line force, T c, and moment, Mc, then
simplify due to T̂c = T (r1) and T ∗c = T ∗(r1).

2. For an initially stress-free configuration, the lower strip surface must be separated from
the substrate either by r =∞ or by the equilibrium distance, req, for which the traction is
zero, Tc (req) = 0. Considering Remark 1, this distance can be easily derived from Eq. (23);
req = r0/

6
√

15 [9].

3. Numerical ill-conditioning for r → 0, where the contact force approaches infinity, can be
avoided by regularizing contact formulations (24) and (28). Here, the slopes of Tc and Mc

are limited to a certain threshold, see Appendix A.

4We thus ignore the self-weight of the beam.
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4. A partial increase or decrease of adhesion (e.g. due to varying chemical properties along
the strip) can be considered easily by varying the Hamaker constant, AH ≥ 0, along S.
Note that in an efficient computational framework, contact should be evaluated only for
the adhesive part of the strip, where AH > 0, see Sec. 3.3.

5. The formulation presented here can also be applied to arbitrary contact laws defined by
a body force function bc(r).

2.3.2 Surface adhesion

In the case of adhesion by surface tractions we consider [12]

δΠc = −
∫
∂B0

δϕ · F c dA . (33)

Now, F c dA corresponds to an infinitesimal force acting on the undeformed surface element dA.
Examples for surface adhesion are cohesive zone models, e.g. [13, 14]

F c = −F0

g0
exp

(
1− ‖gs‖

g0

)
gs , (34)

where F0 and g0 are constants, and where

gs = xs − x0
p (35)

is the gap vector between the surface point xs ∈ ∂B and a specific reference point x0
p on the

substrate surface, that could for instance be the initial projection point of xs. The line force,

T c := F cW , (36)

leads to a sectional bending moment as is shown in Fig. 3. Defining the sectional basis vectors

Figure 3: Distributed line force T c and bending moment Mc induced by surface adhesion. By
choice, ∂Bs is oriented such that Θ = 0.

s := [cosψ , sinψ]T and h = [− sinψ , cosψ]T = ∂s/∂ψ at x, one determines the surface
location

xs = x− H

2
h , (37)

8



evaluates T c = T c(gs) from Eq. (36) and (35), and obtains the bending moment as

Mc =
H

2
s · T c . (38)

This bending moment is not only an effect of the section inclination, as in the bulk adhesion
model considered in Sec. 2.3.1, but is also caused by the tangential component of T c. The
virtual contact work and the governing weak form remain as they are given in Eq. (31) and (32),
now considering the new expressions for T c and Mc. Like in the model for bulk adhesion, the
presented surface adhesion model leads to a symmetric finite element tangent matrix, see Sec. 3.

Remarks:

1. The cohesive zone model (36) is unstable for compression due to the absence of any stabi-
lizing forces perpendicular to gs. In order to stabilize compression, a penalty regularization
can be used here.

2. In principle, also other surface adhesion laws can be considered instead of Eq. (36).

3 Beam FE formulation

The beam formulation outlined above is now discretized in the framework of the finite element
method.

3.1 Finite element interpolation

The beam is discretized into nel finite elements. Within each finite beam element, Ωe, the initial
position, X, and the displacement, d, are approximated independently by the interpolations

Xh =

Xh

Y h

Θh

 =
n∑
I=1

NI XI , dh =

uhwh
ψh

 =
n∑
I=1

NI dI . (39)

Here,

XI =

XI

YI
ΘI

 , dI =

uIwI
ψI

 (40)

denote the axis position/inclination at the finite element nodes as well as the unknown displace-
ment/rotation values. In short, we also write

Xh = Ne Xe and dh = Ne de . (41)

Here, Ne =
[
N1I, N2I, ..., NnI

]
is an array containing n shape functions, NI , associated with

the n nodes of element Ωe, and

Xe =


X1

X2
...

Xn

 and de =


d1

d2
...

dn

 (42)
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are the vectors of the nodal initial positions and unknown displacements of the element. The
beam geometry w.r.t. the current configuration then reads

xh = Xh + dh . (43)

For simplicity, superscript h is dropped in the following. The components of d are transformed
to the local coordinate systems according to Eq. (5). We note that here, in general, both d and
θ are interpolated quantities. The partial derivative d′ is then given by

d′ = N′e de , (44)

where

N′e :=
∂Ne

∂S
=
∂Ne

∂ξ

(
∂S

∂ξ

)−1
. (45)

The derivative ∂S/∂ξ is discussed in Sect. 3.4. The transformation of d′ is obtained by inserting
Eq. (44) into definition (6), i.e.

d′loc := Q(θ)d′ = Q(θ) N′e de . (46)

The virtual displacement field, δd, considering the same interpolation as in (41), is written as

δd = Ne δd
e , (47)

where the arrangement of δde is analogous to (42) and (40). According to (16) we then have

δdloc := Q(θ) Ne δd
e , δd′loc := Q(θ) N′e δd

e . (48)

3.2 Internal forces

Given the FE interpolation defined above, we now proceed with the treatment of the internal
virtual work (12). Inserting (48) into (14) yields

δεe = Be δd
e , (49)

with Be = [B1, B2, ..., Bn] and, due to the sparseness of A,

BI = N ′I Q(θ) +NI A . (50)

In an actual implementation BI should be multiplied out for efficiency, giving

BI =

 N ′I cos θ N ′I sin θ NI (w′loc − sinψ)
−N ′I sin θ N ′I cos θ −NI (u′loc + cosψ)

0 0 N ′I

 . (51)

With (49), the internal virtual work of element Ωe becomes, according to (12), δΠe
int = δdTe f eint,

where f eint is the internal force vector of the element that is given by

f eint =

∫
Le

BT
e S dS . (52)

In this form, the components of f eint are given in the global basis. Here, the sectional force
vector S is specified through Eq. (10), (8), and (46), (9), and (41). The stiffness matrix, keint,
that is associated with f eint, and which is needed for the solution procedure discussed in Sec. 3.5,
can be found in Appendix B.1.
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Remarks:

1. Alternatively, the strain operator matrix BI can be formulated w.r.t. the local coordinate
system in the initial configuration, i.e. in direction of uLoc and wLoc. We find

BI = BLoc I Q(Θ) with BLoc I := N ′I Q(ψ) +NI ALoc (53)

and

ALoc =

0 0 −(1 + u′Loc) sinψ + w′Loc cosψ
0 0 −(1 + u′Loc) cosψ − w′Loc sinψ
0 0 0

 . (54)

These expressions are identical to Eq. (15) and (51). For the internal force vector of finite
element Ωe follows

f eint =

n∑
I=1

f eint I , f eint I =

∫
Le

QT (Θ)BT
Loc I S dS . (55)

2. If only infinitesimal deformations occur, d does not affect the strain operator matrix Be.
Considering u′ � 1, w′ � 1, and ψ � 1 (so that θ ≈ Θ) we thus find the linearized strain
operator

Blin
I = N ′I Q(Θ) +NIAlin , (56)

and

Alin =

0 0 0
0 0 −1
0 0 0

 . (57)

3. For beams with varying cross section, the interpolation of the cross-sectional properties
A, I, W , and H is analogous to interpolation (41).

4. An alternative FE description is obtained if we first rotate the nodal displacement vectors
into the local reference coordinate system, i.e.

dLoc I = Q(ΘI) dI , (58)

and then consider the FE interpolation there, i.e.

dLoc =
n∑
I=1

NI dLoc I , d′Loc =
n∑
I=1

N ′I dLoc I . (59)

(Here, we still consider dloc = Q(ψh)dLoc). In this caseBI turns intoBI = BLoc I Q(ΘI),
so that Eq. (55) simplifies to the formulation discussed in the book by Wriggers [7],

f eint =

n∑
I=1

f eint I , f eint I = QT (ΘI)

∫
Le

BT
Loc I S dS . (60)

3.3 Contact forces

Inserting interpolation (47) into (31), lets us write the virtual contact work for finite element Ωe
c,

e = 1, . . . , nce, as δΠe
c = δdTe f ec , where

f ec = −
∫
Le

NT
e

[
T c

Mc

]
dS (61)
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denotes the elemental contact force vector. Here, nce is the number of elements where AH > 0,
see Remark 4 of Sec. 2.3.1. The tangent matrix associated with f ec is given by

kec =
∂f ec
∂de

=

[
∂f ec
∂u

∂f ec
∂ψ

]
Ne , (62)

which yields

kec = −
∫
Le

NT
e


∂T c

∂u

∂T c

∂ψ

∂Mc

∂u

∂Mc

∂ψ

Ne dS . (63)

The individual terms are discussed below. It is shown that kec is fully symmetric. Due to
the strong variation of T c and Mc, f ec and kec are integrated to high accuracy by using several
quadrature points, see Sec. 3.4.

3.3.1 Bulk adhesion

We first consider the formulation of Sec. 2.3.1, where T c and Mc are given by Eq. (25) and (28).
Introducing the abbreviation (...)′ = ∂(...)/∂rM, considering that δu = δx, and noting that
∂rM/∂x = np, the first two submatrices from Eq. (63) are readily obtained as

∂T c

∂u
= T ′c np ⊗ np and

∂T c

∂ψ
=

[
Tc +

H

2
T ′d

]
tanψnp , (64)

where we have defined Td := T (r1) + T (r2). The third submatrix simply is

∂Mc

∂u
=

[
∂T c

∂ψ

]T
. (65)

The last piece, the derivative of the contact moment w.r.t. inclination ψ, is found as

∂Mc

∂ψ
=
H

2

[
rM T ′d − r0 T ∗d

′
]

tan2 ψ +Mc
1 + sin2 ψ

sinψ cosψ
, (66)

where we have introduced T ∗d := T ∗(r1)+T ∗(r2). With these expressions, the tangent matrix kec
becomes fully symmetric, as it should, since the adhesion forces can be derived from a potential.
Both the proof of symmetry and the derivation of T ′c, T

′
d, and T ∗d

′ are discussed in Appendix B.2.
If the bending moment, Mc, is neglected, the symmetry of kec is lost, which essentially implies
an inconsistency of the formulation. Nothing is gained from this approximation. We note that
in the initial configuration ψ = 0, so that one has Mc = 0, ∂Mc/∂u = 0, and ∂Mc/∂ψ =
rM T̂c − r0 T ∗c .

3.3.2 Surface adhesion

Secondly, we consider the formulation of Sec. 2.3.2, where T c and Mc are given by Eq. (36) and
(38). The first entry in kec can now be written as

∂T c

∂u
=
∂T c

∂gs

∂gs
∂x

=
∂T c

∂gs
, (67)

since ∂gs/∂x = I according to Eq. (35) and (37). Writing T c = Tc ḡs with ḡs = gs/gs and
gs = ‖gs‖, and setting T ′c := ∂Tc/∂gs we can then find

∂T c

∂gs
= T ′c ḡs ⊗ ḡs +

Tc
gs

(
I − ḡs ⊗ ḡs

)
, (68)
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see [14]. With this, the second entry in kec can be easily found as

∂T c

∂ψ
=
∂T c

∂gs

∂gs
∂ψ

, (69)

where
∂gs
∂ψ

=
H

2
s , (70)

according to Eq. (35) and (37). It is also easy to see that

∂Mc

∂x
=
H

2
s · ∂T c

∂gs
=

[
∂T c

∂ψ

]T
, (71)

caused by the symmetry of ∂T c/∂gs. The last entry in kec is also simple to evaluate; we find

∂Mc

∂ψ
=
H

2
h · T c +

H2

4
s · ∂T c

∂gs
s . (72)

As in the above case, kec turns out to be fully symmetric – again a consequence of the fact that
the formulation is derivable from a potential. The symmetry is lost if Mc is neglected.

3.4 Integration

The integrals appearing in f eint, f ec , keint, and kec are evaluated by using numerical quadrature on
the master domain ξ ∈ [−1, 1]. The element configuration is therefore mapped onto this master
configuration by considering the transformation

dS = S, ξ dξ , (73)

where (...), ξ is shorthand for the derivative ∂(...)/∂ξ. According to (39), the axial coordinate, S,
is interpolated in the same way as the displacement field, d, so that

S, ξ =
n∑
I=1

NI, ξ SI . (74)

For linear elements with n = 2 nodes, considered in the examples below, the Jacobians are
constant and given as S, ξ = Le/2, where Le is the element length in initial configuration. Using
numerical quadrature, the integrals are then rewritten as∫

Le

f(S) dS =

∫ 1

−1
f(ξ)S, ξ dξ ≈

nqp∑
qp=1

f(ξqp)S, ξ(ξqp)wqp , (75)

where ξqp are appropriate quadrature points with the weights wqp. In order to avoid shear
locking we use reduced integration for the internal force and stiffness, e.g. ngp = 1 for linear
elements [7]. The contact integrals, on the other hand, are integrated with several quadrature
points, e.g. ncqp = 5, due to the strong nonlinearities of the considered adhesion formulations.

3.5 Solution

The elemental force vectors, f eint and f ec , are assembled into the global vectors, fint and fc. After
accounting for the essential boundary conditions on d (i.e. the vector of all nodal unknowns dI),
we are left with the FE equilibrium equation

f(d) = fint + fc = 0 . (76)
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Relation (76) is a system of nonlinear equations, which must be linearized by using e.g. Newton’s
method. The tangent matrix, k = kint + kc, required for this method is assembled from the
elemental contributions, keint and kec, provided in Sec. 3.3 and Appendix B.1. At every Newton
step we then need to solve the linear system

k ∆d + f = 0 , (77)

for the new displacement increment, ∆d. A summary of the complete finite element algorithm
is given in Tab. 1.

Loading loop: incremental application of loads, i.e. prescribed forces or displacements

Newton iteration loop (for solving (76)):

1. provide initial guess for unknown displacement d (e.g. from previous load step)
2. iterate until convergence

Element loop, for all nel elements:

obtain displacements de and initial inclinations Θ1, . . . ,Θn,
loop over quadrature points:

1. interpolate displacement d and its derivative d′ by (41) and (44)
or alternatively, interpolate dLoc and d′Loc by (59)

2. compute local displacements as dloc = Q(ψ)dLoc = Q(θ)d
3. compute local strain operator matrices BLoc I according to (53)
4. obtain elemental strain ε (8) and force resultant S (10)
5. evaluate quadrature point contribution to f eint according to (55)

or, alternatively, according to (60)
6. evaluate quadrature point contribution to keint according to (87)

and (88) or, alternatively, according to (87) and (97)

assemble f eint and keint into global system of equations (77)

Contact loop, for all nce contact elements:

loop over quadrature points:

1. compute contact traction T c according to (25) or (36)
2. compute contact moment Mc according to (28) or (38)
3. evaluate derivatives of T c and Mc (see Sec. 3.3.1 or 3.3.2)
4. integrate contact force f ec (61) and stiffness kec (63)

assemble f ec and kec into global system of equations (77)

Solution of the linear system (77) for the increment ∆d,
update di+1 = di + ∆d, i← i+1

Table 1: FE algorithm.

3.6 Convergence analysis

This section discusses a simple test case in order to perform a convergence study for the FE beam
model. In addition, the results are compared to both an analytical [9] and a 2D finite element [15]
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adhesion model. A thin strip with rectangular cross section is considered. In the initial state,
75 % of its lower surface (0 ≤ S ≤ 0.75L) adhere to a planar and rigid substrate. The strip
is peeled off the substrate by rotating the right boundary by ψ|S=L = ψb. The length and
thickness are taken as L = 200 nm and H = 10 nm. The width, W , and Young’s modulus, E,
are used for normalization and remain unspecified. Considering the van der Waals model, the
parameters AH = 10−19 J and r0 = 0.4 nm are chosen. Poisson’s ratio is assumed to be ν = 0.2.

We now consider the bending moment, M , which is required to maintain the prescribed rotation,
as well as the internal energy,

Πint =
1

2

∫
L
εTS dS , (78)

for ψb = 150◦. We obtain M(ψb) = 1.5976EW 3 and Πint(ψb) = 2.0736EW 3 for nel = 6, 400
elements and ncqp = 5 quadrature points per contact element. As Fig. 4a and 4b show, both
quantities converge for increasing numbers of finite elements and contact quadrature points.
(Because of the shear locking effects discussed in Sec. 3.4, the numerical quadrature of the
internal forces is not refined here.) The bending radius of the strip, R0 = κ−1, is measured as
R0 = 5.2176H.
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Figure 4: Convergence study for the bending moment M and the internal energy Πint for
the angle ψb = 150◦: a. Relative error increasing the number of finite elements nel (ncqp = 5);
b. Relative error increasing the number of quadrature points per contact element ncqp (nel = 400).

For pure bending, the quantities M and R0 can be derived analytically [9] as

M = EWH2

√
wadh

6EH
, R0 = H

√
EH

24wadh
. (79)

The term wadh denotes the work of adhesion, which is given for the total detachment process
by wadh = 3

√
15AH/

(
16πr20

)
[9]. This yields M = 1.5986EW 3 and R0 = 5.2130H, which

is in excellent agreement to our numerical results. Small differences are to be expected here
because the assumption of pure bending made for the analytical solution is not valid close to
the peeling zone of the strip. A detailed 2D finite element analysis by Sauer [15] provides a
bending moment of M = 1.642EW 3. This value is very close to the result obtained with the
beam model. The difference between both solutions is a consequence of the different models.
The 2D model differs from the beam model in the assumptions of nonlinear (Neo-Hookean)
elasticity and the independence of the contact traction from the strip inclination, ψ.
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4 Numerical example: Peeling behavior of gecko spatulae

The beam model discussed in the previous sections is now used to model the peeling process of
a gecko spatula.5 A detailed 3D finite element model of a single spatula is provided by Sauer
and Holl [11]. On the basis of this model, we generate a reduced beam geometry that has
the same cross-sectional properties as the 3D model, but requires significantly less degrees of
freedoms. Besides the continuum model, we also re-examine the previous spatula beam model
of Sauer [8], which considers both a simplified geometry and contact formulation. The three
different models are compared by performing a vibration and peeling analysis.

4.1 Geometry analysis

In the following, we use L0 = 1 nm for normalization. As shown in Fig. 5, the 3D spatula
geometry of Sauer and Holl [11] consists of a cylindrical shaft, which ends in a flat, triangular
pad. While the pad itself is very thin, its rim is significantly thicker. The geometry is symmetric
w.r.t. the (X,Y )-plane, see Fig. 5.

Figure 5: Reduction of the 3D solid model of a gecko spatula [11] to a 2D beam model.

Although its shape is three-dimensional, we assume here that the attachment and peeling of the
spatula can be described within the plane of symmetry. We thus reduce the 3D solid model to a
two-dimensional beam model by defining the axis, S, within this plane as shown in Fig. 5. The
cross section properties, A and I, are obtained according to the procedure outlined in Tab. 2.
For the spatial discretization of the beam model, we follow the approach of Sauer and Holl [11]
who have used a coarse finite element mesh for the spatula branch and a fine mesh for the pad.
Here, elements of length 2L0 for the branch and approx. 1/3L0 for the pad are used. We reduce
with the chosen mesh the number of degrees of freedom from approx. 420,000 to 4,000, i.e. by
approximately 99 %.

In Fig. 6a, the position of the beam axis in the (X,Y )-plane is visualized. The spatula shaft
is initially inclined by Θ ≈ 5◦. Fig. 6b shows the width of the adhesive spatula pad for the
present and the previously studied [8] beam model. The pad widths differ substantially at the
connection between pad and shaft (for X < 100L0). The enclosed area,

Ac :=

∫
Lc

W (S) dS , (80)

5The spatulae form the tips of the fine hairs (setae) covering the gecko toes.
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1. Define a preliminary axis

shaft: use the centroid of the cylindrical shaft

pad: follow the circular curve through the points P2 and P6,
defined in the model of Sauer and Holl [11] (see Fig. 2 there)

2. Discretize the axis using nel finite elements and nno = nel + 1 nodes

3. Loop over the finite element nodes:

i. define a section plane normal to the preliminary axis

ii. intersect the surface mesh of the solid FE model and determine
the polygon describing the contour of the cross section

iii. compute the cross section area, A, the position of the center of
area, (Xc, Yc), and the 2nd moment of area w.r.t. (Xc, Yc), I

iv. (only within the spatula pad,) define the pad height, H,
and compute the width, W , of the adhesive bottom surface

4. Define the actual beam axis by connecting the centers of areas, (Xc, Yc),
and approximate the sectional inclination, Θ, by using the axis inclination

Table 2: Generation of the discretized spatula beam geometry.

defines the contact surface area of the adhesive pad. Here, Lc denotes the length of the adhesive
part. The contact area Ac agrees well for the two models, as Tab. 3 shows.

Fig. 6c and 6d show the cross section area, A, and the second moment of area w.r.t. the beam
axis, I, for both models. The figure shows that there are very large differences between the two
beam models, especially in the transition zone between spatula pad and shaft. The quantities
are normalized by the maximum values Amax = A|S=0 and Imax = I|S=0 occurring at the base
of the spatula shaft. Amax and Imax are specified in Tab. 3.

Model Ac

[
L2
0

]
Amax

[
L2
0

]
Imax

[
106 L4

0

]
Beam 49,318 11,181 9.948
Beam (previous) 49,233 11,310 10.179

Table 3: Properties of the present spatula model compared to a previous beam model [8]: Total
contact area Ac and maximum cross section properties Amax and Imax.

For the beam model, the effective cross-sectional shear area, As, needs to be specified. Here,
we consider a shear area of As = 5/6A, see Appendix C. Following Sauer and Holl [11], we
choose the parameters E = 2 GPa, ν = 0.2, AH = 10−19 J, and r0 = 0.4 nm. Note that in the
previous study [11], a Neo-Hooke material behavior has been considered for the 3D spatula.
For the sake of comparability, we also consider a Saint Venant-Kirchhoff material model here:
This model shows – like our beam model – a linear stress-strain relation, but a geometrically
nonlinear behavior.

4.2 Vibration analysis

In the following, we compare the vibration characteristics of the three different spatula models
by performing a modal analysis. For this purpose, we clamp the spatula at the shaft boundary,
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Figure 6: Spatula geometry according to the present beam model in comparison to the previous
beam model of Sauer [8]: a. Position of the line of centroids in the (X,Y )-plane; b. Width W
of the adhesive spatula pad over the X-coordinate; c. Normalized cross section area A; d. Nor-
malized second moment of area I w.r.t. the beam axis.

d|S=0 = 0, and consider the eigenvalue problem(
klin − ω2

i m
)
ϑi = 0 , (81)

where m is the mass matrix given in Appendix B.3, and klin is the linearized stiffness matrix.6

ϑi and ωi correspond to the characteristic displacement and frequency of the ith eigenmode.

Tab. 4 shows the first ten eigenfrequencies obtained with the 3D solid spatula model in compar-
ison to the reduced beam model presented here. The eigenfrequencies for the previous spatula
model of Sauer [8] are listed for the sake of completeness. The term ebeam denotes the relative
error7, ebeam = |ωbeam − ωsolid| /ωsolid. The corresponding displacements are shown in Fig. 7.
For both the continuum and the beam model we obtain the first seven bending modes and the
first longitudinal mode of the spatula, see Tab. 4 and Fig. 7. The torsional modes, ϑ5 and ϑ9,
observed for the solid model cannot be obtained with a two-dimensional model. These modes
are anyway not relevant for peeling in the (X,Y )-plane.

The first eigenmodes of the present beam model agree well with the results obtained with the

6We obtain klin by following Appendix B.1 with Blin
I from Eq. (56) and CIJ = 0.

7Note, that the eigenvalues according to the solid model may still be subject to significant discretization errors.
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Mode ωsolid ωbeam ebeam ωold beam Kind

ϑ1 0.1512 0.1520 0.57 % 0.1610 1st bending
ϑ2 0.4893 0.5106 4.36 % 0.3498 2nd bending
ϑ3 1.0599 1.1198 5.65 % 1.1991 3rd bending
ϑ4 1.8861 2.0712 9.81 % 1.7477 4th bending
ϑ5 2.3990 – – – 2nd torsional

ϑ6 2.8901 2.9152 0.87 % 3.1691 1st longitudinal
ϑ7 3.0551 3.2263 5.60 % 3.3653 5th bending
ϑ8 4.3577 4.6588 6.91 % 4.2445 6th bending
ϑ9 5.1702 – – – 4th torsional
ϑ10 5.8017 6.2868 8.36 % 6.1475 7th bending

Table 4: First natural frequencies (in GHz) of the spatula according to the reduced beam model
compared to a detailed solid model [11] and a previous beam model [8].

solid model. It is seen in Fig. 7 that the nodes of vibrations occur at the same locations for
both spatula models. Regarding both the first bending and longitudinal modes, ϑ1 and ϑ6, the
natural frequencies differ in less than 1 %, see Tab. 4. All other errors are less than 10 %. The
large error in the fourth bending mode, ϑ4, may be caused by significant torsional deformation
observed for the mode of the solid model (Fig. 7). We can conclude that our beam model is
able to accurately capture the mechanical behavior of the considered structure.

4.3 Peeling simulation

In this section, the peeling behavior of the three spatula models is compared by considering the
van der Waals model and by studying peeling due to bending and vertical loading. In addition,
we investigate peeling due to horizontal loading, using the cohesive zone formulation described
in Sec. 2.3.2.

4.3.1 Rotational peeling

First, the spatula is peeled from a flat and rigid substrate by rotating the base of the spatula
shaft by ψ|S=0 = ψb.8 The horizontal and vertical degrees of freedom remain unconstrained
at this point. Fig. 8a shows the resulting bending moment for the solid model of Sauer and
Holl [11], the present beam model, and the simplified beam model of Sauer [8]. For small
inclinations, the peeling behavior of the present beam model agrees well with the results of
Sauer and Holl [11]. At the beginning of the peeling process, the bending moment increases
rapidly for both considered models and reaches its maximum at similar shaft inclinations, see
Tab. 5. We observe that the moment drops due to a system instability when the first part of
the pad (at S ≈ 0.72L or X ≈ 80L0) is peeled from the substrate. Here, the spatula cross
section changes remarkably, see Fig. 6c and 6d. After the drop-off, the beam model produces
a larger moment than the solid model. This may be caused by the axis inclination at the rim,
which is not accounted for in our adhesion formulation. Regarding the solid spatula, the peeling
behavior is very similar for the two considered material models. This observation confirms our
assumption of large deformations but small strains.

8From the chosen orientation of the beam axis follows ψ|S=0 < 0. For convenience, however, the sign is
omitted in the following.
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Figure 7: Mode shapes of the first natural frequencies for the spatula beam model (right)
compared to a detailed solid model [11] (left). For better visualization, the 3D surface is added
to the plots for the beam model.
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Figure 8: Peeling behavior of the present beam model compared a detailed solid model [11] and
a previous beam model [8]: a. Peeling moment M for an imposed rotation angle ψ|S=0 = ψb ;
b. Peeling force P for an imposed vertical displacement w|S=0 = wb and a shaft inclination of
θ|S=0 = 60◦, see Section 4.3.2.

Model Mmax

[
EL3

0

]
eM ψmax

Solid (St. Venant-Kirchhoff) 782.3 - 26◦

Solid (Neo-Hooke) 781.8 0.07 % 26◦

Beam 837.2 7.02 % 28◦

Beam (previous) 375.8 52.0 % 296◦

Table 5: Maximum bending moment and corresponding rotation for the beam spatula model
compared to a detailed solid model [11] and a previous beam model [8]. Here, the term
eM = |M−MStVenant| /MStVenant denotes the relative error in the maximum moment.

It is important to note that the detachment behavior of the spatula beam model strongly
depends on how the tip of the adhesive pad is modeled. Considering the adhesive pad surface
shown in Fig. 6b, the spatula can be rotated by ψb = 136◦, which is larger than for the solid
model. Fig. 8a shows that the beam model of the spatula detaches quite earlier if we consider
e.g. a small part of the spatula tip (X > 340L0 in Fig. 6b or S > 0.98L0 in Fig. 6c) as
non-adhesive.9 We discuss the adjustment of the adhesive pad surface in the following section.

In contrast to the other spatula models, the bending moment observed for the previous beam
model [8] is considerably lower. After reaching M ≈ 200EL3

0, the bending moment increases
only slightly, see Fig. 8a. Compared with the other models, the spatula shaft has a very high
bending resistance, while the bending stiffness of the pad is almost negligible (Fig. 6d). For
this reason, the spatula pad accommodates most of the deformation. The observation that
the bending moment is small for this model illustrates that the thicker rim of the spatula pad
contributes significantly to the spatula strength.

4.3.2 Vertical peeling for a shaft inclination of 60 degrees

After rotating the shaft to an inclination of θ|S=0 = 60◦ (ψb = 55◦), the spatula pulled upward
by an imposed displacement along the Y -direction: w|S=0 = wrot+wb and ψ|S=0 = ψb. The term

9The adhesive area thus decreases to Ac = 47, 385L2
0, i.e. by 3.9 %.

21



wrot denotes the vertical displacement caused by the pre-rotation. Fig. 8b shows the peeling
reaction forces obtained for the three spatula models. In contrast to the previous beam model,
the new beam model behaves very similarly to the solid model; the reaction force increases
almost linearly for displacements smaller than 120L0. For wb ≥ 120L0, only a small part of the
spatula pad adheres to the substrate. Here, the new beam model is slightly softer as the reaction
force is smaller. The differences at the end of the detachment process are due to the fact that a
beam theory is not applicable for the tip of the spatula pad. The solid model detaches earlier at
wb = 184L0, when approx. 10 % of the spatula pad remain attached to the substrate. For the
beam model, approx. 6 % of the pad adhere to the substrate at full detachment (wb = 205.5L0).
We therefore adjust the size of the adhesive pad for the beam model according to Sec. 4.3.1.
Then, both the maximum force and the prescribed displacement at full detachment agree very
well for both models, see Fig. 8b and Tab. 6. Regarding the beam model of Sauer [8], the peeling
reaction force is significantly larger, see Fig. 8b and Tab. 6. We can conclude that, in contrast
to the previous beam model, the reduced beam model compares well with the 3D continuum
model.

Model Pmax

[
EL2

0

]
eP umax [L0]

Solid (St. Venant-Kirchhoff) 3.370 - 166
Solid (Neo-Hooke) 3.333 1.07 % 167
Beam 3.282 2.59 % 181
Beam (previous) 3.934 16.7 % 148.5

Table 6: Maximum peeling force and corresponding displacement for the beam spatula model
compared to a detailed solid model [11] and a previous beam model [8]. Here, the term eP =
|P − PStVenant| /PStVenant denotes the relative error in the maximum force.

We now consider four different states of the peeling process, which are also marked as black
diamonds in Fig. 8a and 8b:

1. Shaft rotation by ψb = 26◦ (θ|S=0 = 31◦) (location of the system instability),
2. Shaft rotation by ψb = 55◦ (θ|S=0 = 60◦) (start of vertical peeling),
3. Vertical displacement by wb = 60L0 at θ|S=0 = 60◦, and
4. Vertical displacement by wb = 120L0 at θ|S=0 = 60◦.

Fig. 9a and 9b show the contact traction and moment as well as the components of the force
resultant, S, for the four configurations. The peeling front of the spatula pad becomes apparent
as a sharp spike in the contact traction and moment (where Tc < 0 and Mc > 0). The remaining
part of the pad (where Tc > 0 and Mc < 0) is pressed into the substrate due to the bending
resistance of the spatula. Fig. 10 shows the corresponding spatula deformations for both the
beam model and the 3D solid model. The stress shown for the solid model is the first invariant
I1 = trσ normalized by Young’s modulus E. For the beam model we have visualized the stress
(σ1 + σ2)/E, with

σ1 =
N

A
+
M

I
· H

2
and σ2 = − 1

W
min (Tc, 0) , (82)

Here, σ1 is the usual normal stress for beams due to axial forces and bending. The term σ2
contains the adhesive traction at the lower pad surface. Although it is not accounted for in
beam theory, it can indicate the current position of the peeling front. As one can see in Fig. 10,
both the spatula deformation and the internal stresses, trσ and σ1, are very close for the two
models. In addition, the peeling front occurs at the same location. This shows that the beam
model is capable of capturing the peeling behavior of the spatula accurately even though it
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Figure 9: Contact and internal forces for four configurations of the spatula beam model: a. Con-
tact traction and moment Tc/W and Mc/W for 1. ψb = 26◦, 2. ψb = 55◦, 3. wb = 60L0 at
ψb = 55◦, and 4. wb = 120L0 at ψb = 55◦; b. Corresponding normal and shear force resultants
and bending moment.

contains 90-times less degrees of freedom. Note that a more comprehensive study, discussing
vertical peeling of a spatula for different pre-rotations, can be found in [11] for the 3D solid
model.

4.3.3 Influence of the shear stiffness and the contact moment

This section investigates the influence of both the shear flexibility of the beam and the bending
moment, Mc, caused by adhesion, see Eq. (27). For this purpose, we study the peeling processes
discussed in Sec. 4.3.1 and 4.3.2 for

1) a large shear modulus (G→∞) and

2) the assumption that the contact moment is negligible, Mc = 0.

We note that the assumption GAs → ∞ leads to the Bernoulli beam formulation. Here, we
increase G by the factor 1,000. Fig. 11 shows the bending moment and peeling force for the
two modified formulations compared to the original beam formulation. Neglecting the contact
moment, Mc, results in smaller values for the applied peeling moment, M(ψb), and peeling
force, P (wb). This is also seen in Tab. 7. In this case the spatula detaches earlier from the
substrate than for the original model.

The influence of the shear flexibility becomes most apparent for large spatula deformations, see
e.g. ψb = 29◦ in Fig. 11a. Nevertheless, spatula peeling is mainly characterized by axial and
bending deformation. The results show that both quantities affect the peeling behavior of the
spatula. Combined together, they lead to a symmetric finite element tangent matrix, k, which
may accelerate the solution of the linear system (77).
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a. b.

c. d.

solid model beam model

Figure 10: Spatula peeling due to a shaft rotation by ψb = 55◦ followed by vertical displacement;
shown are the configurations for 1. ψb = 26◦, 2. ψb = 55◦, 3. wb = 60L0, and 4. wb = 120L0.
a. & c. Top and bottom view for the solid model; b. & d. Top and bottom view for the beam
model. The colors show trσ/E for the solid model and (σ1 + σ2)/E for the beam model.
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Figure 11: Peeling behavior of the present beam model compared to the special cases G → ∞
(shear rigid) and Mc = 0 (simplified contact model): a. Peeling moment M for shaft rotation ψb;
b. Peeling force P for vertical shaft displacement wb and inclination θ|S=0 = 60◦.
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Model Mmax

[
EL3

0

]
eM Pmax

[
EL2

0

]
eP

Original 837.2 - 3.282 -
GAs →∞ 866.3 3.47 % 3.386 3.15 %
Mc = 0 821.0 1.94 % 3.049 7.11 %

Table 7: Maximum bending moment and peeling force for the present spatula model compared
to a shear stiff model (GAs →∞) and to a simplified contact formulation (Mc = 0). The terms
eM and eP denote the relative errors compared to the original beam and contact formulations,
e• = | • − •orig | / •orig.

4.3.4 Tangential loading

Finally, we study the detachment behavior of the spatula for horizontal peeling. The base of the
spatula shaft, rotated by ψb = 55◦, is now loaded by a prescribed horizontal displacement in the
positive and negative X-direction, u|S=0 = urot+ub and ψ|S=0 = ψb. In the previous examples,
friction had been omitted as it does not play any significant role for vertical loading [11]. For
horizontal loading, however, the peeling behavior depends strongly on the friction behavior
between pad and substrate. To model tangential debonding we consider the cohesive zone
formulation discussed in Sec. 2.3.2. The parameters F0 and g0 are chosen such that, regarding
the vertical direction, the cohesive zone model shows a peeling behavior similar to the van der
Waals model. Here, the maximum adhesion force and the total contact energy should agree for
both models. This yields

F0 = − 1

W
T
(
r0/

6
√

5
)

and g0 =
wadh

F0 exp(1)
, (83)

where the work of adhesion, wadh, is specified in Sec. 3.6. This choice results in a cohesive zone
model that behaves almost identically to the van der Waals model during vertical peeling (where
the tangential contact forces absent in the van der Waals model play no role). This is shown
in Fig. 12a. In Fig. 12b and 12c, the reaction force due to horizontal peeling is shown. The
peeling behavior of the spatula depends strongly on the peeling direction. This is in agreement
to the experimental observations of Autumn et al. [16]. Fig. 13 shows the deformed beam
for different horizontal displacements. When the spatula is moved to the left, the adhesive
spatula pad is pressed into the substrate, which causes large reaction forces, see Fig. 12b.
For displacements in positive X-direction, the pad curls up, which decreases the remaining
contact area significantly. For this reason, the maximum reaction force is much smaller than
for vertical peeling. Considering E = 2 GPa and L0 = 1 nm, the horizontal detachment forces
are Pmax,l ≈ 300 nN and Pmax,r ≈ 6 nN, a difference of 50.

5 Conclusion

This paper presents a model for thin film peeling that is based on the geometrically exact beam
formulation of Reissner [6], which is essentially a nonlinear version of the Timoshenko beam
accounting for finite elongation, finite bending and finite shearing of the beam. For the descrip-
tion of the peeling forces, two different adhesion formulations are considered: 1. Bulk adhesion,
e.g. van der Waals adhesion, and 2. surface adhesion, e.g. cohesive zone models. In both cases,
the peeling forces induce a significant bending moment within the beam that is not considered
in the previous formulation of Sauer [8]. For shear deformable beams, the bending moment
is important for consistency, as the stiffness matrix becomes unsymmetric otherwise. Also,
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Figure 12: Peeling behavior of the present beam model using the cohesive zone formulation of
Sec. 2.3.2: a. Peeling force P for a vertical displacement wb (θ|S=0 = 60◦), compared to van der
Waals interaction; b. Peeling force P for a horizontal displacement ub (θ|S=0 = 60◦); c. Zoom
of b.

a. b.

beam model

Figure 13: Spatula deformation for horizontal peeling (θ|S=0 = 60◦) using the beam model
with the cohesive zone formulation of Sec. 2.3.2; shown are the configurations for ub/L0 =
−240, −160, −80, 0, 80, 160, 240; a. Top view; b. Bottom view. The colors show (σ1 + σ2)/E.
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this bending moment can become quite large, as is shown in [9]. The new beam formulation
is validated both against analytical peeling models and existing 2D and 3D solid FE models.
Compared to the latter, the new formulation allows a major reduction in the computational
complexity, while remaining remarkably accurate. This is shown by several examples examining
the mechanical behavior of gecko spatulae. The high efficiency of the new model is a major
advantage in the context of multiscale modeling of adhesion and in the context of optimiza-
tion of adhesive microstructures [17, 18]. Both these applications are currently under further
investigation by the authors. The current computational results are based on piecewise linear
interpolation. Further accuracy gains are expected with the use of high-order, continuously
differentiable interpolation such as is provided by Hermite or NURBS-based interpolation. In
order to study the 3D peeling behavior of adhesive strips for arbitrary direction, the beam
model can be extended by considering a three-dimensional beam formulation, e.g. [19, 20, 21].
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A Regularization of the contact law

In the computational framework, ill-conditioning of the contact stiffness matrix can be avoided
by regularizing Tc and Mc for small distances, r, where the strip and the substrate repel each
other strongly. If the distance of the lower beam surface to the substrate is larger than a certain
distance, rreg, the term T̂c is computed from Eq. (22). For smaller distances, we use linear
extrapolation,

T̃c :=

{
T̂c, r1 > rreg ,

T reg
c +Kreg

c (r1 − rreg) , r1 ≤ rreg ,
(84)

where T reg
c and Kreg

c are the traction and its derivative w.r.t. r, evaluated at the distance rreg,

T reg
c = T (rreg)− T (rreg+H(S) cosψ), (85)

Kreg
c = −[bc(rreg)− bc(rreg+H(S) cosψ)] . (86)

The functions T (r) and bc(r) are given by Eq. (23) and (18). This approach can be considered
as a penalty method, which is a frequently used method to treat penetration in computational
contact mechanics. A reasonable choice for the linearization distance is rreg = req, see Remark 2
in Sec. 2.3.1. The contact moment Mc can be regularized in the same manner.

B Matrices for FE formulation

B.1 Internal stiffness matrix

The internal force tangent is assembled from the elemental stiffness matrices,

kint =

nel∧
e=1

keint , keint =

n∑
I=1

n∑
J=1

keIJ . (87)
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For the stiffness contribution, considering the nodes I and J in finite element Ωe, we have

keIJ =

∫
Le

BT
I DBJ dS +

∫
Le

QT (θ)CIJ Q(θ) dS , (88)

where the first part is referred to as material stiffness and the second part as geometric stiffness.
The terms D and BI are obtained from Eq. (11) and (51). The matrix CIJ is defined as

CIJ :=

 0 0 −N ′INJ V
0 0 N ′INJ N

−NIN
′
J V NIN

′
J N −NINJ α

 , (89)

using the abbreviation

α = (u′loc + cosψ)N + (w′loc − sinψ)V . (90)

In the equations above, N and V are the axial force and shear force acting on the deformed
cross section, i.e. in the local directions, uloc and wloc. For an efficient FE implementation, the
terms appearing in keIJ should be multiplied out. This gives for the second term

QT (θ)CIJ Q(θ) =

 0 0 −N ′INJ Vglo
0 0 N ′INJ Nglo

−NIN
′
J Vglo NIN

′
J Nglo −NINJ α

 . (91)

The terms Nglo and Vglo can be understood as the axial and shear force acting in the global
directions, i.e. along u and w. They are given by

Nglo = N cos θ − V sin θ , Vglo = N sin θ + V cos θ . (92)

Remarks:

1. In analogy to the strain operator matrix, see Eq. (53), the elemental stiffness matrix can
be expressed w.r.t. the local reference system,

keIJ =

∫
Le

QT (Θ)BT
Loc IDBLoc J Q(Θ) dS +

∫
Le

QT (Θ)CLoc IJ Q(Θ) dS , (93)

which is identical to Eq. (88). Here, we define the matrix CLoc IJ as

CLoc IJ :=

 0 0 −N ′INJ VLoc
0 0 N ′INJ NLoc

−NIN
′
J VLoc NIN

′
J NLoc −NINJ αLoc

 , (94)

using the abbreviation

αLoc = (1 + u′Loc)NLoc + w′Loc VLoc (95)

and the forces NLoc and VLoc w.r.t. the directions uLoc and wLoc,

NLoc = N cosψ − V sinψ , VLoc = N sinψ + V cosψ . (96)

2. Following Remark 4 in Sec. 3.2, the global degrees of freedom are interpolated after rotat-
ing them into the local reference system. For the strain operator matrix at node I thus
holds BI = BLoc I Q(ΘI). The rotation matrices in Eq. (93) can then be moved outside
the integral,

keIJ = QT (ΘI)

[∫
Le

BT
Loc IDBLoc J dS +

∫
Le

CLoc IJ dS

]
Q(ΘJ) . (97)

If we split CLoc IJ into an axial and a shear part, CLoc IJ = N GN
IJ + V GV

IJ , we obtain
the formulation of Wriggers [7].
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B.2 Contact stiffness terms for bulk adhesion

This section discusses the derivatives T̂ ′c, T
∗
c
′, T ′d, and T ∗d

′ required for the tangent matrix for
bulk adhesion, see Sec. 3.3.1. From definition (21) follows that dr1 = drM and dr2 = drM. We
thus obtain

T̂ ′c =
∂T (r1)

∂r1
− ∂T (r2)

∂r2
, T ∗c

′ =
∂T ∗(r1)

∂r1
− ∂T ∗(r2)

∂r2
, (98)

and, considering Eq. (23) and (30),

∂T (r)

∂r
= − AH

2πr40

[
1

5

(r0
r

)10
−
(r0
r

)4]
,

∂T ∗(r)

∂r
=

r

r0

∂T (r)

∂r
. (99)

The remaining derivatives, T ′d and T ∗d
′, are determined analogously. For the derivative of the

contact moment w.r.t. the position in current configuration we have

∂Mc

∂u
=
[
T̂c + rM T̂ ′c − r0 T ∗c

′
] tanψ

cosψ
nTp . (100)

According to Eq. (22), (29), (98), and (99), the last two terms in the bracket are composed of

rM T̂ ′c − r0 T ∗c
′ = rM

[
∂T (r1)

∂r1
− ∂T (r2)

∂r2

]
−
[
r1
∂T (r1)

∂r1
− r2

∂T (r2)

∂r2

]
=
H

2
cosψ T ′d . (101)

This gives

∂Mc

∂u
=

[
T̂c +

H

2
cosψ T ′d

]
tanψ

cosψ
nTp =

[
∂T c

∂ψ

]T
. (102)

From Eq. (64) and (66) then follows that the elemental contact stiffness matrix, kec, is symmetric.

B.3 Mass matrix

The mass matrix that is required to solve the eigenvalue problem (81) is assembled from the
elemental mass matrices,

m =

nel∧
e=1

me , me = ρ0

∫
Le

NT
e ANe dS , (103)

where Ne is the shape function matrix, and ρ0 is the beam density in initial configuration,
which is assumed to be constant over S. The tensor A is given by A = diag

[
A , A , I

]
.

C Effective shear area

We assume in the following that the shear stress within the structure varies only along the
height, i.e. τ = τ(Y ). The shear area can then be obtained by solving

1

2

V 2

GAs
=

1

2

∫
τ2(Y )

G
dA, τ(Y ) =

V S(Y )

I W (Y )
, (104)

where V is the shear force resultant, I the second moment of area w.r.t. the beam axis, W (Y )
the beam width, and S(Y ) the static moment of the partial area up to Y , S(Y ) =

∫
ηW (η) dη.

In the study of gecko spatulae in Sec. 4 we consider As = 5/6A, which is reasonable as the cross
section of the spatula pad resembles a rectangle if we neglect the pad rim, see Fig. 5. Besides,
shearing effects are less significant than bending and elongation: Comparing the eigenmodes by
assuming either rectangular or circular cross sections for the shear areas, the relative errors of
the first ten natural frequencies are less than 0.81 %.
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