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Abstract:

A new computational contact formulation is presented and analyzed for large deformation fric-
tional contact. The new formulation uses an unbiased treatment of the two neighboring contact
surfaces considering the two-half-pass contact algorithm, originally derived for frictionless con-
tact. The presented work thus introduces several novelties to unbiased friction algorithms.
The new algorithm does not enforce traction continuity at the contact interface explicitly, but
rather satisfies it intrinsically to high accuracy, as is shown. A new 3D friction formulation is
also proposed that is a direct extension of the 1D setup, expressing the friction variables in the
parameter space used for the curvilinear surface description. The new formulation resorts to
classical expressions in the continuum limit. The current approach uses C1-smooth contact sur-
face representations based on either Hermite or NURBS interpolation. A penalty regularization
is considered for the impenetrability and tangential sticking constraints. The new, unbiased
friction formulation is illustrated by several 2D and 3D examples, which include an extensive
analysis of the model parameters, a convergence study and the comparison with a classical
biased master/slave contact algorithm.

Keywords: computational contact mechanics, isogeometric analysis, non-linear continuum
mechanics, predictor-corrector algorithm, sticking and sliding friction, two-pass algorithms

1 Introduction

This work is concerned with unbiased contact formulations, which treat both contact surfaces
equally. This treatment is in contrast to most contact formulations, which introduce a bias
by treating the surfaces differently, usually in the context of a master/slave or mortar/non-
mortar designation. In an earlier paper, we have presented a new contact formulation that
appears naturally if contact is derived from pairwise surface potentials [1]. The formulation is
motivated from general surface interactions, like adhesion and electrostatics. Apart from those,
the potential formulation also admits classical contact formulations, like penalty and barrier
methods. The new formulation leads to an unbiased two-pass contact algorithm, where each
pass accounts only for half of the contributions of common one-pass approaches, and it was
therefore termed two-half-pass contact algorithm. It turned out that in the case of the penalty
method, the resulting formulation of [1] is very similar to the earlier work of Papadopoulos and
co-workers [2]. The only differences between [1] and [2] lie in the definition of the gap function
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and in the constraint enforcement, which in our case is considered at the quadrature level like
in [3] and [4].
In subsequent work by Papadopoulos and co-workers, [2] is extended to Lagrange multipliers
considering 2D [5] and 3D [6] contact implementations. There, the authors include a continuity
enforcement of the contact traction into the numerical formulation and consider a patterning of
the surface nodes, distinguishing between nodes where the gap is constrained and nodes where
pressure continuity is enforced. This setup is then later used to develop 2D and 3D friction
formulations that are unbiased [7; 8]. This is different from our approach. Here, the contact
traction continuity is not enforced explicitly. Instead it is obtained naturally to high accuracy
in computations, since traction continuity is satisfied in the continuum limit of the formulation,
as is proven in [1] for the frictionless case. For the numerical examples investigated so far, the
continuity error is of the same order than the discretization error. Further, in our case, the con-
tact constraints (impenetrability and sticking) are not enforced exactly, but only approximately
up to the accuracy of mesh discretization.
The approach taken here also considers a new 3D friction formulation for large deformations,
which tries to remedy some of the inconsistencies present in previous formulations. The new
formulation becomes equal to the friction formulation of [9] and [10] in the continuum limit,
as the temporal discretization approaches zero. In order to circumvent some of the patholo-
gies resulting from sliding on discrete surfaces, we use C1-smooth surface representations based
on Hermite (in 2D) and NURBS interpolations (in 3D). Such formulations have recently been
developed for frictionless [11; 12; 13; 14] and frictional contact [15; 16; 17]. Here the surface in-
terpolation is used directly within the interpolation of the deformation field, which distinguishes
the formulations from surface smoothing methods that have been used in the past for friction,
e.g. see [18; 19; 20]. The current work considers a penalty regularization of both contact con-
straints. The contact conditions are enforced at the quadrature level as in the formulations of
[3] and [4]. The computational stability of this approach is discussed in Secs. 3 and 4.3.

To summarize, the new aspects of this work are:

• a new friction formulation for large-deformation contact that is similar but not identical
to [9] and [10],

• a corresponding new frictional contact algorithm that is based on the concept of two
half-passes going back to [2] and [1],

• contrary to prior work [7; 8], our friction algorithm does not enforce traction continuity,
nor does it use nodal patterning for the contact constraints,

• the new algorithm thus uses separate traction fields and active sets on the two surfaces
that are not directly coupled,

• the new algorithm is compared extensively with its – well established – full-pass counter-
part considering several challenging 2D and 3D contact examples,

• it considers C1-smooth surface descriptions based on Hermite and NURBS interpolation,
which have not been applied to a frictional two-half pass setting before, and in the case
of Hermite not even applied to any frictional two-deformable-body contact setting before.

The remainder of this paper is organized as follows: Sec. 2 presents the friction formulation in
the general 3D continuum mechanical framework of large deformations. Temporal discretization
is considered, leading to the friction algorithm. Spatial discretization in the framework of the
finite element method is then discussed in Sec. 3, both for the classical full-pass approach and the
two-half-pass approach. Numerical examples are then presented in Sec. 4. The paper concludes
with Sec. 5.
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2 Friction formulations for large deformation contact

This section presents the 3D friction formulation that is considered in this work. The formulation
is based on a classical predictor-corrector algorithm to advance friction locally through the states
of sticking and sliding. The presented formulation is based on the treatment in 1D, which leads
to some differences compared to existing friction formulations, as is shown.

2.1 Sticking and sliding

Given the contact surface, the contact traction tc can be decomposed into a normal and tan-
gential part, written as

tc = tn + tt . (1)

In [1] we have extensively discussed formulations for the normal contact traction tn. For fric-
tional contact, the tangential traction tt is determined by the behavior during sticking and
sliding. The distinction between these two states is based on a slip criterion of the form

fs

{
< 0 sticking ,
= 0 sliding .

(2)

An example for the slip function fs is

fs = ‖tt‖ − µ p (3)

which corresponds to a cone in {p, tt}-space. Here p := ‖tn‖ denotes the contact pressure, while
µ denotes the coefficient of friction.3 During sticking, the traction tt is defined by the constraint
that no relative tangential motion occurs. During sliding, the traction tt is characterized by a
sliding law, like Coulomb’s law

tt = −µ p ġt

‖ġt‖
, (4)

where ġt denotes the relative tangential sliding velocity between the surfaces. The sticking con-
straint can be regularized by a penalty approach, which is considered here. This regularization
allows for a small amount of tangential slip, denoted ∆ge, that is reversible (thus ‘elastic’) upon
unloading. Denoting the remaining, irreversible slip that is associated with sliding by gs, the
total tangential slip gt thus decomposes into

gt = gs + ∆ge . (5)

Algorithmically, the state changes between sticking and slipping are usually based on a predictor-
corrector approach as is used in elastoplasticity [21]. Crucial in this approach is the definition
of the elastic trial step. In the following, we first examine the 1D setup and then propose a new
formulation for the trial step based on this. Existing alternative formulations are also reported
for reference.

2.2 1D description for planar surfaces

We first examine the friction formulation on 1D, planar surfaces, since this serves as a motivation
for our proposed new friction formulation, which is discussed in Sec. 2.5. In 1D, the setup can
be described by the behavior shown in Fig. 1. The friction state is characterized by a point on

3Here, the coefficient of sticking friction is considered equal to the coefficient of sliding friction.
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Figure 1: Description of 1D friction on planar surfaces.

the tt(gt) curve which is either in the state of sticking or sliding. At time n the corresponding
slip and traction are gnt and tnt . The former decomposes into an inelastic (sliding) and an elastic
(sticking) component, written as

gnt = gns + ∆gne . (6)

The traction at step n can then be written as

tnt = εt(g
n
t − gns ) . (7)

We now consider an advancement of the tangential slip from step n to n+ 1 as

gn+1
t = gnt + ∆gn+1

t . (8)

According to Fig. 1, the trial traction, for a linear elastic penalty regularization, is then given
by

ttrial
tn+1 = tnt + εt

(
gn+1

t − gnt
)
, (9)

or equivalently

ttrial
tn+1 = εt

(
gn+1

t − gns
)
. (10)

2.3 3D surface description

As a precursor to the formulation of 3D friction on general surfaces, we first summarize briefly
the description of 3D surfaces. A 3D surface, like the boundary ∂B of body B, can be described
by the mapping

x = x(ξ) , ξ ∈ P , (11)

that maps a point ξ = {ξ1, ξ2} lying in the 2D parameter space P to the surface point x ∈ ∂B.
For the formulation of contact between two bodies B1 and B2, the normal distance and relative
tangential distance between surface points typically needs to be evaluated. Therefore the closest
projection point xp of a given surface point xk ∈ ∂Bk (k = 1, 2) onto the neighboring surface
∂B` (` = 2, 1) needs to be determined. This point is defined by the parametric coordinate ξp,
i.e. xp = x`(ξp). The surface ∂B` at xp is characterized by the co-variant tangent vectors

ap
α :=

∂x`
∂ξα

∣∣∣
ξp

, α = 1, 2 , (12)
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the contra-variant tangent vectors

aαp = aαβp ap
β , [aαβp ] = [ap

αβ]−1 , ap
αβ = ap

α · ap
β , (13)

and the normal vector

np :=
ap

1 × a
p
2

‖ap
1 × a

p
2‖

. (14)

With this, the contact traction acting at xk ∈ ∂Bk is decomposed as

tc = pnp − tt , with tt = tαt a
p
α , (15)

where t1t , t2t and p denote the traction components in the {ap
1 , a

p
2 , np} basis, taken here from

the neighboring surface ∂B`. The minus sign is motivated in Sec. 2.5. With the definition of
the tangent vectors, the coordinates of the projection point, ξαp , can be computed from the two
nonlinear equations

(xp − xk) · ap
α = 0 , α = 1, 2 , (16)

e.g. see [1]. During contact the projection point xp moves across the surface ∂B`, which implies
a change in coordinates ξαp . From time step n to n+ 1 this advancement is expressed as

ξαpn+1 = ξαpn + ∆ξαpn+1 . (17)

For a penalty regularization we can then split ξαpn into inelastic (sliding) and elastic (sticking)
components, i.e.

ξαpn = ξαsn + ∆ξαen . (18)

Thus, space P simply takes over the role of the 1D plane considered in Fig. 1. Here we note
that ξαpn and ξαsn mark absolute positions while ∆ξαen marks a signed relative distance on P. As
long as no contact occurs we set ∆ξαen = 0 and ξαsn = ξαpn.

Here we consider that ∆ξne = {∆ξ1
en, ∆ξ2

en} is small, i.e. due to a large penalty parameter εt.
This implies that the orientation of the tangent plane of ∂B` is approximately equal at x`(ξ

n
p)

and x`(ξ
n
s ). This also implies that x`(ξ

n
s ) travels on the same path as x`(ξ

n
p). In general, for

large ∆ξne , the tangent plane can change substantially between x`(ξ
n
p) and x`(ξ

n
s ) and the two

points will not travel on the same paths.

Remark: The position of Greek indices indicates co-variant and contra-variant variables. For
all other indices (p, n, n + 1, ...) their position has no meaning and they are placed wherever
convenient.

2.4 Existing 3D trial traction formulations

Laursen considers the following formulation for the tangential trial tractions (see [9] p. 160)

ttrial
tn+1 =

(
tntα + εt a

pn+1
αβ

(
ξβpn+1 − ξ

β
pn

))
aαpn+1 . (19)

A slight inconsistency is present in this formulation since the co-variant traction component at
step n, i.e. tntα = tnt · aαpn, does not strictly belong to the basis aαpn+1. Two approximation
errors result from this: (a) the change in direction between aαpn and aαpn+1 is not accounted for

in the terms associated with tntα and ξβpn. This is fine for small ∆t, where the orientation of the
tangent plane does not change between x`(ξ

n
p) and x`(ξ

n+1
p ). (b) The surface stretch between

aαpn and aαpn+1 is not correctly accounted for in tnt . The last inconsistency can be fixed if one

considers tntα = εt a
pn+1
αβ ∆ξβen. In that case we obtain the variant

ttrial
tn+1 = εt

(
ξαpn+1 − ξαsn

)
ap
αn+1 , (20)
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analogously to Eq. (10). Due to the first inconsistency, the tangent that is obtained for an
elastic sticking step is not symmetric. This motivates the formulation proposed in the following
section.

For C0-surface discretizations the tangent directions jump between elements, which motivated
the formulations of [22] and [23]. The formulation of [22] can be shown to be equal to the
formulation of Wriggers [10],

ttrial
tn+1 = tnt + εt

(
ξαpn+1 − ξαpn

)
ap
αn+1 . (21)

This formulation is affected by similar inconsistencies noted above: (a) direction ap
αn+1 does

not correspond to ξαpn; (b) the extra stretch from the update n → n + 1 is not accounted for
in the first term. [23] considers the same formulation as Laursen’s, but in terms of the nominal
traction T t = tt da/dA. To account for the C0 surface deficiencies, they consider the update

∆ξαpn+1 =
(
xn`
(
ξn+1

p

)
− xn`

(
ξnp
))
· aαpn . (22)

2.5 Proposed 3D trial traction formulation

In analogy to expression (7), the proposed new formulation is constructed by considering the
following penalty regularization

tnt = εt
(
xn` (ξnp)− xn` (ξns )

)
, (23)

i.e. we consider a linear elastic relation between ∆xne := xn` (ξnp)−xn` (ξns ) and tnt . We note that
this formulation can be connected to an elastic potential defined on ∆xe. At step n + 1 the
traction of Eq. (23) updates to

tup
tn = εt

(
xn+1
` (ξnp)− xn+1

` (ξns )
)
. (24)

This update accounts for rigid surface rotations, as well as surface stretches. The latter thus
accounts for a desired additional loading of the elastic spring. The proposed new trial traction
formulation now consists of

ttrial
tn+1 = tup

tn + εt
(
xn+1
` (ξn+1

p )− xn+1
` (ξnp)

)
, (25)

or equivalently
ttrial
tn+1 = εt

(
xn+1
` (ξn+1

p )− xn+1
` (ξns )

)
. (26)

These expressions are analogous to the 1D case, see Eqs. (9) and (10). A visualization of
the proposed approach is shown in Fig. 2. Note that typically both ∆ξn+1

p = ξn+1
p − ξnp and

∆ξne = ξnp − ξns are going to be very small (since the time step ∆t and ε−1
t are small), such that

ttrial
tn+1 lies very close to the tangent plane of ∂Bn+1

` at xn+1
p . For ∆t → 0, expression (26) is

equivalent to the formulations of Sec. 2.4, as is formally shown in appendix A.

Remark 1: For large ∆t, the proposed, as well as the formulations of Sec. 2.4, become inaccurate.
While the new formulation removes some of the inconsistencies of the previous formulations, it
is still only approximate and therefore also contains some errors that are related to the surface
curvature: For curved surfaces the difference xn+1

` (ξn+1
p )−xn+1

` (ξnp ) does not properly capture
the additional length and current direction of the sliding path. A refinement to this end has
been proposed by [24].

Remark 2: Expression (26) can be somewhat ‘improved’ if we project ttrial
tn+1 into the tangent

plane of ∂Bn+1
` . In that case we can also replace xn+1

` (ξn+1
p ) by xn+1

k so that we finally get

ttrial
tn+1 = εt

(
I − nn+1

p ⊗ nn+1
p

)(
xn+1
k − xn+1

` (ξns )
)
. (27)

For small time steps, as they are considered in the later examples, only irrelevant differences
have been found between expressions (27) and (26).
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Figure 2: Description of 3D friction on curved surfaces parameterized by surface coordinates ξα

and tangent vectors aα (α = 1, 2). The traction resisting the tangential motion of xk is −tt,
while +tt are the tractions acting on the projection point xp = x`(ξp).

2.6 Algorithmic treatment

We now discuss the formulation of the friction algorithm based on (26). The algorithm is
formulated within the two-half-pass approach [1]: for a surface point xk ∈ ∂Bk the projection
point xp ∈ ∂B` (` 6= k) is computed according to the above procedure. The traction acting at
xk is then −tt (see Fig. 2). The procedure is carried out equivalently for both surfaces k = 1, 2.
The friction algorithm is based on a predictor-corrector approach to enforce slip criterion (2),
see [10]. First, fs is evaluated for the trial state, giving f trial

s = fs(t
trial
tn+1). If f trial

s < 0 we are
in a sticking state with tn+1

t = ttrial
tn+1 and ξαsn+1 = ξαsn. If f trial

s ≤ 0 we have to enforce fs = 0
considering the evolution law for the inelastic slip coordinate ξs. This law can be obtained by
examining the dissipation (energy loss per time and area) during friction, which is given by

D = tt · Lgs , (28)

where

Lgs = ξ̇αs a
s
α , with as

α =
∂x`
∂ξα

∣∣∣
ξs

, (29)

is the Lie derivative of the inelastic slip vector gs. Here as
α is the co-variant tangent vector at

ξs. Invoking the principle of maximum dissipation [10] one can show that Lgs ‖ ∂fs/∂tt, i.e.
we find the following evolution law for the inelastic slip

Lgs = γ nt , nt :=
∂fs

∂tt
=

tt
‖tt‖

. (30)

Inserting eq. (29) and contracting with aαs , the contra-variant tangent vector at ξs, we find

ξ̇αs = γ nt · aαs . (31)
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Using implicit Euler, this is then discretized as

ξαsn+1 = ξαsn + ∆ξαsn+1 , with ∆ξαsn+1 ≈ ∆γn+1n
n+1
t · aαsn+1 . (32)

Mapping ξs to surface ∂B` at n+ 1, we now obtain the update

xn+1
` (ξn+1

s ) = xn+1
` (ξns ) + ∆xn+1

` , (33)

with

∆xn+1
` ≈ ∆ξαsn+1 a

s
αn+1 = ∆γn+1n

n+1
t (34)

due to eq. (32.2). The traction at n+ 1, given as

tn+1
t = εt

(
xn+1
` (ξn+1

p )− xn+1
` (ξn+1

s )
)

(35)

according to eq. (23), now becomes

tn+1
t = εt

(
xn+1
` (ξn+1

p )− xn+1
` (ξns )−∆γn+1n

n+1
t

)
= ttrial

tn+1 − εt ∆γn+1n
n+1
t .

(36)

This can be expanded into

nn+1
t

(
‖tn+1

t ‖+ εt ∆γn+1

)
= ntrial

tn+1 ‖ttrial
tn+1‖ , (37)

which implies

nn+1
t = ntrial

tn+1 (38)

and

‖tn+1
t ‖ = ‖ttrial

tn+1‖ − εt ∆γn+1 . (39)

Enforcing fn+1
s = 0 now gives

∆γn+1 =
‖ttrial

tn+1‖ − µ pn+1

εt
. (40)

Inserting this expression into eq. (36) correctly returns Coulomb’s law

tn+1
t = µ pn+1n

n+1
t . (41)

The friction algorithm following from these equations is summarized in table 1. The algorithm
is embedded within the contact algorithm employed for the discretized system (see Sec. 3). For
the two-half-pass approach the algorithm is applied to every contact point xk ∈ ∂Bk for both
surfaces (k = 1, 2). The current surface descriptions xn+1

k and xn+1
` are provided through the

global Newton iteration.
Note, that since aαsn+1 depends on ξαsn+1, update (32) is a nonlinear equation that can for
example be solved by a local Newton iteration. Since ∆ξn+1

e is considered small, we can replace
aαsn+1 by aαpn+1 inside (32), as is done in table 1. As a simple alternative one can also take aαsn+1

from the previous step of the global Newton iteration. If no contact occurs we set ttn+1 = 0
and ξαsn+1 = ξαpn+1.

Remark: The accuracy of the friction algorithm depends on the step size ∆γ (due to ∆t) that
affects the implicit Euler approximation in (32) and the traction formulation of Sec. 2.5 (see
remarks there). For quasi-static problems the ‘time’ step n→ n+ 1 is set by the loading steps
applied to the system. In the examples of Sec. 4, those steps have been considered sufficiently
small, and their influence on the accuracy is investigated.
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1. Given, starting values

ξnp , ξns previous coordinates of the projection and sliding points

xn+1
k current position of the surface point xk ∈ ∂Bk
xn+1
` = xn+1

` (ξ) current surface description of ∂B`
ξn+1

p , pn+1 current projection point coordinate and contact pressure for

point xn+1
k (both obtained from a normal contact algorithm)

2. Elastic predictor step

ttrial
tn+1 = εt

(
xn+1
` (ξn+1

p )− xn+1
` (ξns )

)
3. Check slip criterion

f trial
sn+1 = ‖ttrial

tn+1‖ − µ pn+1

if f trial
sn+1 ≤ 0 : sticking state; ∆γn+1 = 0

if f trial
sn+1 > 0 : sliding state; ∆γn+1 = f trial

sn+1/εt

4. Inelastic corrector step

ξαsn+1 = ξαsn + ∆γn+1n
n+1
t · aαpn+1 with nn+1

t =
ttrial
tn+1

‖ttrial
tn+1‖

tn+1
t = ttrial

tn+1 − εt ∆γn+1n
n+1
t

Table 1: Predictor-corrector algorithm for the computation of the tangential contact force, tt,
at the surface point xk ∈ ∂Bk. The algorithm is employed independently on both surfaces
(k = 1, 2).

3 Finite element discretization

This section briefly summarizes the spatial finite element discretization of the model equations
of Sec. 2. Two approaches are discussed: The classical full-pass approach, as it is for example
considered in [3] and [4], and the two-half-pass approach presented in [1]. For the full-pass
approach, we loop over the elements of one surface (the designated slave surface), denoted ∂cBk
(k = 1 or k = 2), to compute the elemental contact force vectors

f eck = −
∫

Γe
k

NT
k tk dak , f ec` =

∫
Γe
k

NT
` tk dak , (42)

acting on element Γek ⊂ ∂cBhk and partially on some elements Γe` ⊂ ∂cBh` (` 6= k). Here Nk and
N` are the arrays containing the nodal shape function of the elements. In this paper Hermite
[12] and NURBS-based [25] shape functions are used for the contact surface interpolation. For
the two-half-pass approach we loop over both contact surfaces ∂cBk (k = 1 and k = 2) to
compute the elemental contact force vector4

f eck = −
∫

Γe
k

NT
k tk dak , (43)

4The two-half-pass version considered here is denoted ‘class P’ in [1].
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acting on element Γek ⊂ ∂cBhk . In both cases tk is given by eq. (15). The corresponding global
virtual work contributions are, for the full-pass

Gc = −
∫
∂Bk

δϕk · tk dak +

∫
∂Bk

δϕ` · tk dak , k = 1, ` = 2, or k = 2, ` = 1 , (44)

and for the two-half-pass

Gc = −
2∑

k=1

∫
∂Bk

δϕk · tk dak , (45)

where δϕk denotes the virtual deformation of body Bk. The conceptual difference between the
two approaches is illustrated in Fig. 3. For the full-pass approach, two variants are possible

Figure 3: Full-pass and two-half-pass approaches: Full-pass with upper surface as slave (left);
full-pass with lower surface as slave (middle); two-half-pass (right). Black forces: quadrature
point entries in f eck; red forces: quadrature point entries in f ec`.

as the figure shows. It is emphasized that for the two-half-pass, contrary to the full-pass, the
contact tractions are computed separately for the two surfaces and are therefore, in general,
not in exact equilibrium. This inaccuracy is an error measure of the two-half-pass algorithm.
In the examples we have studied so far we have found that this error is of the same order as the
discretization error. Therefore, the error vanishes as the discretization parameters approach the
exact continuum limit. This is shown in detail for the examples in Secs. 4.2 and 4.3. The FE
solution algorithm for the two-half-pass approach follows the algorithm given in [1], where step
2 is now given by table 2. To distinguish the states of contact (on/off) and friction (stick/slip),
active sets are needed for both surfaces. In case of the full-pass algorithm only one surface loop
and corresponding active set is needed. But additionally, the contribution f ec` and associated
stiffness terms kec`k and kec`` have to be computed, see appendix B. In all cases, the numerical
integration over Γek is carried out in parameter space P, over the master element defined by
ξα ∈ [−1, 1]. For the accurate integration, which is crucial for elements containing contact
state changes, a large number of quadrature points is considered here for simplicity.5 The area
transformation between master configuration and current configuration is given by

dak = Jk d� , (46)

where d� := dξ1dξ2 and Jk :=
√

det aαβ, aαβ = akα · akβ, and where akα are the tangent vectors
of ∂Bk at xk.

An important aspect of the two-half-pass approach is its computational stability during chal-
lenging contact simulations. In the current formulation the contact constraints (impenetrability
and sticking) are enforced at the quadrature level of integrals (42) and (43) using a penalty reg-
ularization. This can lead to a loss of numerical stability due to over-constraining of the formu-
lation, especially if many quadrature points are considered, and especially in the two-half-pass
case, where twice as many constraints are needed to characterize the tractions independently
on the two surfaces (see Fig. 3). Over-constraining is the result of trying to satisfy too many

5An alternative is to consider segmentation techniques to subdivide the contact elements into easily-integrable
regions [26], although, here, this would require the accurate determination of the state boundary.
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At each load or time step n→ n+ 1:

For each surface ∂Bk (k = 1, 2): loop over the active contact elements Γek to compute
force f eck (43) and associated stiffness terms keckk, k

e
ck` (64) by numerical quadrature;

therefore, at each quadrature point xk:

i. closest point computation

1. solve (16) with Newton’s method to obtain the coordinates ξp of the

closest projection point xp ∈ ∂B` of xk

2. evaluate the normal contact distance gn and corresponding direction np

ii. contact computation

if gn ≥ 0 : set tk and corresponding gradients to zero; set ξs = ξp

if gn < 0 :

1. evaluate the normal contact force tn = pnp based on Eq. (66)

2. evaluate the tangential contact force tt from the algorithm of table 1

3. obtain the coordinates ξs from the algorithm of table 1

4. compute the gradients ∂tk
∂ue

k
and ∂tk

∂ue
`
, according to appendix B

Table 2: The two-half-pass algorithm for frictional contact.

constraints with too few degrees-of-freedom. This leads to surface locking [27; 5] and the failure
of the LBB condition6. There are two principle ways to alleviate the problem: Firstly, by a
reduction of the number of constraints, e.g. through a nodal patterning approach, as is con-
sidered by [5] and [6] for the earlier formulation of [2]. The second possibility, pursued here,
is to satisfy the constraints approximately instead of exactly, e.g. by using moderate penalty
parameters. This is motivated by the fact that the discretized contact problem is anyway only
solved approximately. All the examples that we have considered so far indicate that the con-
straints can be solved to the same order of accuracy as the discretization error without running
into numerical ill-conditioning resulting from over-constraining. This is shown in detail in the
example of Sec. 4.3. This property of our approach stands in contrast to a result of [6], which
indicates that a two-pass penalty regularization without constraint reductions either leads to
severe inaccuracy or over-constraining. We believe that the main reason why our method can
get accurate and stable solutions lies in omitting any enforcement of traction continuity from
the formulation and relying on the fact, also noted in [2], that traction continuity is recovered
as the mesh is refined. This omission effectively imposes less restrictions on our solution.
In the case of inequality constraints the situation is somewhat less critical, as redundant con-
straints can, in theory, release and become inactive. Exploiting this property is therefore a third
option. This has been considered successfully in the context of infinitesimal, frictionless contact
in [28].

4 Numerical examples

This section discusses four examples that illustrate the symmetry (Sec. 4.1), the influence of the
model parameters (Sec. 4.2), the convergence behavior (Sec. 4.3) and the 3D behavior (Sec. 4.4)

6Ladyzhenskaia-Babuška-Brezzi condition e.g. see [27] for the case of contact.
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of the proposed new contact algorithm.

4.1 A symmetric test case (for frictional contact)

The first example considers a simple symmetric test case, that is useful for testing the two-
half-pass algorithm for frictional contact. The problem setup, shown in Fig. 4, consists of two
half-cylinders with radius L0 that are pressed together by applying the displacement components
ūy = −ū and ūx = ū/2 to the top boundary of the upper cylinder. The perfect symmetry of

Figure 4: Test case: Undeformed configuration (left); deformation for µ = 0.1 (middle); defor-
mation for µ = 0.6 (right). The coloring shows the stress I1 = trσ normalized by E0.

the test case must result in the exact symmetry of the two half-passes, and the deformation and
the contact traction must therefore be exactly equal on the two surfaces. Here, the two bodies
are described by the Neo-Hookean material model [29]

σ =
Λ

J
(ln J) I +

G

J

(
FF T − I

)
, J = detF , (47)

where F is the deformation gradient and Λ = 2Gν/(1− 2ν) and G = E/2/(1 + ν) are the bulk
and shear moduli (in the linear elastic regime). For both bodies the same material parameters
E = E0 and ν = 0.3 are used. Parameter E0, along with dimension L0, are then used for the
dimensional normalization of the problem. Contact is modeled by the penalty regularization
considering a penalty parameter of εn = εt = ε = 100E0/L0 and the friction law of Coulomb (4).
For accuracy and dense output of the contact tractions, 20 equidistant quadrature points are
used to integrate (43). Q1CH contact elements based on C1-continuous Hermite interpolation
are used for the computations [12; 17]. Two cases are considered: one for low µ, where full
sliding occurs, and one for high µ, where full sticking occurs. Fig. 4 shows the deformation
of the two cases for ū = 2/3L0. The contact tractions for the two cases are shown in Fig. 5.
The blue and red curves display the raw, i.e. quadrature point, data for the normal pressure
p = −εn gn and the tangential traction

t = tt · ā , ā =
a

‖a‖
, a =

∂x

∂s
. (48)

Here, S and s denote the surface coordinates in the reference and current configurations ∂B0

and ∂B, and ā is the normalized surface tangent of ∂B, considering that s runs from left to
right along the contact surface. The corresponding black curves (dashed and solid) display the
smoothed pressure and tangential traction according to the post-processing scheme of [17]. For
the case of sliding (µ = 0.1), the tangential traction t(S) is (due to (4)) exactly proportional
to the pressure p(S). This is independent of the number of load steps. For the case of sticking
(µ = 0.6), two different numbers of load steps are considered to impose ū: nū = 20 and nū = 200.
The latter yields a smoother result of the raw traction t(S). For all cases, the difference of the
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Figure 5: Test case: Contact tractions for µ = 0.1 (left) and µ = 0.6 with nū = 20 loadsteps
(middle) and nū = 200 loadsteps (right). Here, ε = 100E0/L0.

normal and tangential tractions on the two surfaces lies at machine precision, as it should. Due
to this traction equivalence, also the stress field within the two cylinders agrees to machine
precision. This is shown in Fig. 6, where the deviation of I1 = trσ from its average value
(of corresponding points on both bodies) is displayed. For comparison, Fig. 7 shows the same

Figure 6: Test case: Inaccuracy in I1 = trσ (normalized by E0) according to the two-half-pass
algorithm for µ = 0.1 (left) and µ = 0.6 (right). This lies within machine precision. Here
nū = 100.

results for the full-pass contact algorithm. This algorithm introduces a surface bias, which leads
to a much higher error in the stress field (10−4 instead of 10−14). The example demonstrates
the merits of the unbiased two-half-pass algorithm.

4.2 2D ironing

4.2.1 Problem setup

The second example considers the ironing problem using the setup of [17]. The problem is
used to carefully analyze the proposed new friction formulation and compare the two-half-pass
algorithm with the full-pass algorithm. A half-cylinder (B1) with radius L0, is pressed into an
elastic block (B2) and then moved horizontally across the block, as is shown in Fig. 8. The size
of the block is 2L0 × 10L0. The bottom surface of the block is fixed, and periodic boundary
conditions are applied at the two vertical boundaries. The Neo-Hooke material law (47) is
used with E1 = 3E0, E2 = E0, and ν1 = ν2 = 0.3. The coefficient of sliding friction is taken
as µ = 0.5. The penalty parameters are taken as εn = εt = ε = 100E0/L0. As before,
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Figure 7: Test case: Inaccuracy in I1 = trσ (normalized by E0) according to the full-pass
algorithm for µ = 0.1 (left) and µ = 0.6 (right). The accuracy is more than 1010 times lower
than in Fig. 6. Here nū = 100.

Figure 8: 2D frictional ironing: Initial configuration and deformed configuration. The coloring
shows the stress I1 = trσ normalized by E0.

Hermite based, C1-continuous surface elements are used for the contact computations [12; 17],
considering 20 equidistant quadrature points. The two-half-pass algorithm based on the friction
formulation of table 1 is considered.
Fig. 9 shows a few snapshots of the solution during downward and sliding motion. The friction
algorithm is considered active during both. Only sticking and no sliding occurs on the surface
during the downward motion as is seen in the traction plots examined below.7 The spatial and
temporal discretization of the problem is characterized by the numerical parameters mk and
nū. nū denotes the number of loading steps to apply a prescribed displacement of ū = L0.
mk characterizes the FE meshes: the number of elements of B1 and B2 is nel1 = 21m2

1/32 and
nel2 = 5m2

2, respectively. Here parameter m2 corresponds to the number of elements along
2L0 (the block height). The mesh for m1 = 8 and m2 = 12 is shown in Fig. 8. Otherwise
we have considered the meshes for m1 = m2 = m ∈ {8, 16, 32}. As a reference result for the

7In the infinitesimal theory, the theoretical singularity of the tangential tractions (if present) necessitates a
(small) sliding zone at the contact boundary [30]. In the present example, based on finite theory, such a zone
has not been observed during downward or horizontal motion, even for very fine meshes.
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Figure 9: 2D frictional ironing: Deformation at ūx = 0 and ūy = {0, 1, 2}L0/3 (downward
motion; first three frames) and ūy = 2/3L0 and ūx = {0, 1, 2, 3, 4, 5}L0/4 (horizontal sliding
motion; third to last frame). The coloring is the same as in Fig. 8.

following study, we have computed the tractions for the refined case m = 64, nū = 1200, and
ε = 1000E0/L0, referred to as ‘exact’ solution in the following.

4.2.2 Net contact forces

Fig. 10 shows the global contact forces during sliding. Note that here in the nonlinear setting,
Py 6= µPx, as one would expect for small deformations. The enlargements on the right hand side
of Fig. 10 show the differences between the two-half-pass (2hp) and two full-pass (fp) solutions.8

Two different load step numbers, nū = 20 and nū = 80, are considered.9 As was already noted in
Fig. 5, the refinement of the load stepping improves the results, especially for the 2hp algorithm.
The reason for the improvement lies in the inaccurate determination of the initial contact point
for coarse load stepping and the inaccurate determination of the trial traction that results from
this. The inaccuracy therefore only affects the tangential contact traction and not the normal
contact pressure. However, due to the large deformation, both Px and Py are affected by normal
and tangential contact tractions. As the figure shows, the accuracy of the 2hp is comparable to
the accuracy of the fp: It is better for Px, worse for Py, nū = 20 and similar for Py, nū = 80. If
one looks at the average of the 2hp forces (dashed green line), the 2hp result is always better
than the fp results. It can also be concluded here, as in the other case we have studied so
far, that the difference between the 2hp forces is of the same order as the error to the ‘exact’
solution. For a suitably refined load step (i.e. nū = 80), these errors are within 1% of the ‘exact’
solution.

4.2.3 Contact tractions during downward motion

Next, we examine the contact tractions during downward motion. The sliding motion is then
examined in Sec. 4.2.4. Friction is considered in both motions. For the downward motion we
now look at the

8We note again that the two full-pass solutions are taken from two separate runs, alternating the slave/master
designation.

9During the preceding downward motion a very large number of load steps has been used, i.e. nū = 1200.
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Figure 10: 2D frictional ironing: Net contact forces Px (top row) and Py (bottom row) during
sliding for the two-half-pass (2hp) and full-pass (fp) contact algorithms considering µ = 0.5, m =
16 and ε = 100E0/L0. Left: overview; middle: enlargement for nū = 20; right: enlargement for
nū = 80. For 2hp, P1 denotes the force acting on the half-cylinder, while P2 denotes the force
acting on the block.

• influence of the loading step number nū (Fig. 11),

• influence of the starting step for friction (Fig. 12),

• comparison between two-half-pass (2hp) and full-pass (fp) results (Fig. 13),

• influence of the FE mesh density (Fig. 14),

• influence of the penalty parameter ε (Fig. 15).

Fig. 11 shows the convergence of the 2hp results to the ‘exact’ solution for increasing values of
nū. The left column figures show the contact tractions acting on ∂B1, the middle column shows
the tractions on ∂B2. The blue and red curves display the raw, i.e. quadrature point, data for
the normal pressure and the tangential traction according to Eq. (48).10 The corresponding
black curves (dashed and solid) display the smoothed pressure and shear according to the
post-processing scheme of [17]. These curves are then compared in the right column figures. In
theory the contact tractions are equal for both bodies. But numerically the 2hp approach results
produces differences. As seen, the agreement (w.r.t. each other and w.r.t the ‘exact’ solution) is
excellent for the contact pressure.11 For the tangential traction, significant differences appear.
These decrease with increasing nū. The reason for this lies in the inaccurate determination of
the initial contact point for coarse load stepping and the inaccurate determination of the trial
traction that results from this. The inaccuracy therefore only affects the tangential contact
traction and not the normal contact pressure.
Fig. 11 also shows that the raw data is characterized by two sets of superposed oscillations: a

10For comparison a minus sign is included for the traction on body B1.
11A significant difference appears between the raw and the post-processed data at the boundary of contact.

This is caused by the smoothing property of the post-processing scheme.
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Figure 11: 2D frictional ironing; convergence with load step number nū: Accuracy of the
contact tractions for the downward motion (at ūy = 2/3L0) for m = 8, ε = 100E0/L0 and
nū ∈ {30, 75, 300} (top to bottom). Left column: tractions on ∂B1; middle column: tractions
on ∂B2; right column: post-processed tractions for both surfaces, plotted onto ∂B2 and compared
to the ‘exact’ tractions.

fine scale oscillation that vanishes as the load step refines, and a coarse scale oscillation that
is a combined effect of the penalty regularization and the coarse finite element mesh [17]. The
latter oscillations decrease for mesh refinement (see Fig. 14) and increase for increasing penalty
parameter (see Fig. 15).
As seen, the accurate determination of the time of initial contact is critical to the accurate
determination of the tangential contact tractions. This is particularly true for the 2hp algorithm
since it uses two independent sets of contact points on both surfaces. In general, there are two
reasonable choices for the time of initial contact: Selecting the load step before contact was first
detected, or selecting the load step after contact was first detected.12 Consequently, the friction
algorithm is then activated respectively in the first or second step after contact detection. This
can have a major influence on the accuracy of the 2hp results as Fig. 12 shows. As seen,
considering friction to be active from the first step on, yields much less accurate results. As
can be expected, this inaccuracy decreases if nū increases, as is seen in Fig. 11, where friction
is active from the first detected contact step on.

Fig. 13 shows a comparison between the 2hp and the fp results. For both cases friction is

12The time of initial contact can also be interpolated from the velocities and positions at the two load steps.
This is not considered here.
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Figure 12: 2D frictional ironing: Contact tractions for the two-half-pass algorithm considering
frictional contact to be active from the first (left) or second (right) step when normal contact
is detected. Here m = 8, nū = 20 and ε = 100E0/L0.

Figure 13: 2D frictional ironing: comparison of the two-half-pass algorithm (left) with the full-
pass contact algorithm (right). In case of the full-pass, the two cases ‘body 1’ and ‘body 2’ refer
to the chosen slave body. Here m = 8, nū = 20 and ε = 100E0/L0.

active from the second step on. The figure shows that the two traction curves from the 2hp
algorithm are of comparable accuracy than the curves of the two fp variants (that are obtained
by switching the slave and master designation). Thus, the 2hp difference is of the same order
than the difference between the two fp variants. In terms of the CPU time, the fp is faster,
since only one surface loop is required instead of two successive surface loops: For the m = 16
mesh, the fp with B1 as slave is about 30% faster, while the fp with B2 is about 12% faster.
The 2hp, on the other hand, is more robust than the fp, especially if the fp uses the coarser
surface as slave surface. In the present example, nū = 20 only runs for the 2hp and fp with B1

as slave. The fp with B2 as slave fails for such a coarse load step. nū = 25 steps were needed
for this fp variant.

The following figure (Fig. 14) shows the convergence of the 2hp results to the ‘exact’ solution
for increasing values of mesh parameter m. The arrangement of the data is the same as in
Fig. 11 (see description above). To exclude errors coming from load stepping, a larger number
of load steps is considered. Close inspection of the tangential tractions shows that even for
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Figure 14: 2D frictional ironing; convergence with mesh density m: Accuracy of the contact
tractions for the downward motion (at ūy = 2/3L0) for m = {8, 16, 64} (top to bottom),
ε = 100E0/L0 and nū = 1200. Left column: tractions on ∂B1; middle column: tractions on
∂B2; right column: post-processed tractions of both surfaces compared to the ‘exact’ value.

m = 64 differences between the two-half-pass results remain. These are caused by the penalty
regularization and the resulting non-agreement of the contact surfaces. Increasing the penalty
parameter therefore leads to the decrease of the remaining difference in the tangential tractions.
This is shown on the right hand side of Fig. 15. The arrangement of Fig. 15 is again the same
as in Figs. 11 and 14. For clarity, now an enlargement of the tangential tractions is shown.
Note that the results in the bottom row corresponds to the ‘exact’ case considered in all the
other figures. We also note that apart from convergence, the increase of ε also leads to the
increase in the oscillations of the raw tractions (shown on the left and in the middle of Fig. 15),
and, for very large ε, also an overall loss of accuracy due to ill-conditioning. This indicates
that the proposed formulation becomes unstable if ε is increased for a fixed mesh. If the mesh
density is increased along with ε (which it should in order to eliminate discretization errors), the
formulation remains stable while converging to the exact answer. This is demonstrated by the
example of Sec. 4.3. Even tough the raw (= quadrature level) tractions increasingly oscillate
here, the post-processed tractions converge. This is in agreement with the results in Fig. 20.
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Figure 15: 2D frictional ironing; convergence with penalty ε: Accuracy of the tangential contact
tractions for the downward motion (at ūy = 2/3L0) for m = 64, ε = {100, 400, 1000}E0/L0

(top to bottom) and nū = 1200. Left column: tractions on ∂B1; middle column: tractions on
∂B2; right column: post-processed tractions of both surfaces compared to the ‘exact’ value.

4.2.4 Contact tractions during sliding

We now take a look at the contact tractions during the sliding motion. In the previous case
(during the downward motion), sliding did not occur. It therefore remains to be seen that
the 2hp algorithm correctly captures the contact tractions for sliding and for the stick/slip
transition. According to the considered sliding law (4), the tangential traction is proportional
to the normal pressure. Therefore, since the normal pressure matches so well for the two-half-
passes, it can be expected that sliding should also work well for the 2hp algorithm. This is
confirmed by the results shown in Fig. 16. The arrangement is again the same as in previous
figures (e.g. see Fig. 11). The considered state is one where the contact surface is partially
sticking and partially sliding. The sliding regime is the portion where t = pµ. This occurs
towards the boundary of the contact surface. Otherwise, towards the middle, the surfaces are
still sticking. The results of Fig. 16 show an excellent agreement of the 2hp tractions, both
w.r.t. each other and w.r.t the ‘exact’ solution. This is in spite of the fact that a very coarse
load step is used (nū = 16). The reason for this is that the determination of initial contact, as
noted in Sec. 4.2.3 is only crucial for sticking and not for sliding. Here, now, sticking occurs only
in the middle of the contact surface where all surface points are already in contact. As a result,
the excellent agreement of the 2hp tractions with the ‘exact’ solution is maintained throughout
the sliding phase and the preceding stick/slip transition as is shown in Fig. 17. Inaccuracies
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Figure 16: 2D frictional ironing: Accuracy of the contact tractions during the sliding motion
(at ūx = L0/4) for m = 16, ε = 100E0/L0 , nū = 16. Left: tractions on ∂B1; middle: tractions
on ∂B2; right: post-processed traction of both surfaces compared to ‘exact’ value.

Figure 17: 2D frictional ironing: Contact tractions during the sliding motion at ūx =
{0, 1, 2, 4, 5, 6} × L0/8 (top left to bottom right) for m = 16, ε = 100E0/L0 and nū = 16.

remain at the boundary of contact and the boundary between stick and slip. These are due to
the smoothing property of the post-processing scheme. For the computational results of Figs. 16
and 17, the starting configuration from the preceding downward pressing was obtained with a
very small load step (nū) to eliminate errors there. It has been confirmed that also during the
sliding phase the agreement between the tractions of the 2hp algorithm and fp algorithms (for
both variants) is as good as in the downward motion (Fig. 13).

From the traction analysis of this section and the preceding section, we can conclude that also
in the case of frictional sticking and sliding contact, just like in the case of frictionless contact
[1], the 2hp properly captures the traction continuity at the contact interface. This is consistent
with the theoretical proof available for the continuum [1].
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4.3 Sliding contact between two rings

The third example considers sliding contact between two concentric rings. The example is used
to study the stability and convergence behavior for the proposed two-half-pass (2hp) friction
algorithm. Two rings, B1 and B2, with initial radii R1 ∈ [1, 2]L0 and R2 ∈ [2, 3]L0 are
considered as shown in Fig. 18a. The two rings are both discretized by m×12m finite elements,
considering various values for m. Hermite-enriched contact elements Q1CH are used along the
contact interface at R = 2L0. The rings are modeled by constitutive model (47), considering

Figure 18: Sliding contact between two rings: left: undeformed intial configuration (here for
4×24 elements (m = 2), standard Q1 elements in green, Q1CH elements in white); right:
Deformed configuration (here for 8×48 elements (m = 4)) for the radial displacement ūr = L0/2
and rotation angle 30◦; the coloring shows the radial stress component σrr.

E = E0 and ν = 0.3. Sliding is modeled by Coulomb’s law (4), using µ = 0.2. The inner
boundary, at R = L0, is considered fixed. On the outer boundary, at R = 3L0, an inward radial
displacement of ūr = L0/2 is applied, during which, due to rotational symmetry, no sliding
occurs. Then a counter-clockwise rotation is applied to the outer boundary, which leads to
the deformed configuration shown in Fig. 18b. Sliding occurs beyond 28.535◦, when the shear
traction on the interface reaches µ-times the interface pressure. This result can be obtained
without using any contact algorithm – simply using a connected mesh. In this manner a highly
accurate reference solution was obtained (using m = 128) that is independent of the contact
algorithm. Fig. 19 shows the convergence behavior of the 2hp friction algorithm to the reference
solution by looking at the errors in the interface radius and the contact pressure

err(r) =
∣∣∣rref − r(ε,m)

rref

∣∣∣ , err(p) =
∣∣∣pref − p(ε,m)

pref

∣∣∣ (49)

for various values of the penalty parameter ε = εn = εt and the mesh parameter m. Here
r(ε,m) and p(ε,m) are averaged over the sliding path of 30◦/m (corresponding to the sliding
of one contact element) considering 15 load increments.13 The figure shows that, for fixed
m, the convergence stagnates for high values of ε, since an increase of ε only removes the
penetration error but not the discretization error associated with m.14 Once the curve stagnates,

13Here, the pressure is determined from the normal component of the nodal contact forces. Due to rotational
symmetry, it is, like r, equal for all nodes.

14During convergence, ro and po approach rref and pref from below, while ri and −pi first approach rref and
−pref from above, pass rref and −pref and then approach rref and −pref from below. This leads to the dip in the
convergence curves for ri and pi.
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Figure 19: Sliding contact between two rings: Convergence behavior of the two half-pass-
algorithm examining the interface radius (left) and the contact pressure (right); ri, ro, pi and
po correspond to the values of the inner and outer contact surfaces.

increasing ε further is not useful, but rather counter-productive, since an increase in ε leads to
ill-conditioning. This is shown in Fig. 20.15 The figure demonstrates that ill-conditioning does

Figure 20: Sliding contact between two rings: Computational accuracy of the Newton-Raphson
iteration in the energy norm for various penalty and mesh parameters. The denser the mesh
(increasing m), the higher ε can be taken to obtain the same accuracy; an example is the
sequence marked by ‘◦’ that is then used in Fig. 21.

not affect accuracy significantly since no more than 6 digits are lost in the energy norm (out of
almost 32). For large ε, the computation may altogether fail, due to a loss of convergence in
the Newton-Raphson iteration. This occurs beyond the values shown in Fig. 20. This failure
can be attributed to the tendency of over-constraining in the 2hp algorithm that eventually
leads to an unstable setup.16 The computational failure is also related to the number of loading
steps during sliding. Lowering the step size will allow using larger ε without failure. As is seen

15The data shown here was averaged over the various iteration steps during sliding, determining the exponent
of the computational accuracy only up to ±0.1, which explains the wriggles in the curves.

16Here, 10 Gaussian quadrature points are used for each surface element on the contact surface. Since all
these points remain actively in contact, the contact constraint is thus enforced at 20 locations for each pair of
neighboring Q1CH elements, which use cubic interpolation.
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from Fig. 19, the failure due to over-constraining only becomes an issue once the convergence
behavior anyway stagnates due to fixed m. The problem of stagnation and over-constraining
is avoided if the number of elements and the step size are increased along with the penalty
parameter. This is shown in Fig. 21, where ε and the step size are increased linearly with m.
For such an increase the computation accuracy even improves, as the ‘◦’ in Fig. 20 show. This

Figure 21: Sliding contact between two rings: Convergence behavior of the interface radius
(left) and the contact pressure (right) for m = {2, 4, 8, 16, 32} considering ε = 1600mE0/L0

and a stepsize of 30◦/m.

shows that the 2hp algorithm can be used to compute frictional contact robustly and accurately,
converging without problems to the exact solution.17 Fig. 21 also shows that the 2hp errors
(ri − ro) and (pi − po) and averages (ri + ro)/2 and (pi − po)/2 converge at the same rate and
are of comparable accuracy than ri, ro, pi and po. We can thus conclude that the 2hp error is
of the same magnitude as the overall discretization error.

4.4 Twisting contact between a hemisphere and a block

The next example considers 3D frictional twisting contact between a hemisphere and a block.
Fig. 22 shows the considered problem setup. A thick, hollow half-sphere (B1) is pressed into
a solid block (B2) and then twisted as shown. The dimensions of the block are L0 × L0 × L0;
the outer radius of the hollow sphere is L0, the inner radius is 2/3L0. Initially a downward
motion of ū = L0 is applied to the sphere and then maintained during twisting. Both bodies
are modeled as Neo-Hookean (47), where the Young’s modulus of the sphere is taken five times
larger than that of the block (E1 = 5E0, E2 = E0). Poisson’s ratio is taken as ν = 0.3 for
both bodies. Friction leads to large shear deformation of block and sphere. Coulomb friction
(4) is considered with µ = 0.5. For simplicity, the downward motion is modeled frictionless
here. The penalty parameters are chosen as εn = εt = ε = 100E0/L0. The two contact
surfaces are modeled with NURBS enriched contact elements [25], while the rest of the bodies
is modeled with linear elements. 10×10 Gaussian quadrature points are used for the evaluation
of the contact integrals. The meshes contain nel1 = 4 · 112 and nel1 = 83 volume elements and
ncel1 = 112 and ncel1 = 82 surface elements on the contact surface.

17Convergence to the exact answer implies the disappearance of the mesh discretization error (convergence in h)
and the constraint-enforcement error (convergence in ε). The stability of contact algorithms is often only assessed
from the latter. In that sense our approach appears unstable. But it is stable when simultanous convergence
(here with ε ∼ h−1) is examined. This is in agreement with mathematical convergence theory [31].
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Figure 22: Frictional twisting: Undeformed configuration (far left); deformation and stress
I1 = trσ (normalized by E0) for twisting angles 0, 30, 60 and 180 degrees (left to right). The
colorscale is the same as in Fig. 23.

Fig. 23 shows the stress fields I1 and σzz (vertical normal stress component) inside the block
and sphere at a twisting angle of 90 degrees. The view shows the large deformations inside the

Figure 23: Frictional twisting: Deformation and stresses I1 (left) and σzz (right), both normal-
ized by E0, at a twisting angle of 90 degrees. Parts of the block and sphere are removed for this
display.

two bodies. I1 is particularly large inside the sphere, due to its contact induced bending.
Further, Fig. 24 shows the global contact force Pz and torque Mz during twisting. Sliding
starts to occur on the boundary of the contact surface and then progresses inward until the
entire contact surface is in sliding. This occurs from an angle of 118 degrees on. Since the shear
tractions at the center of the contact surface hardly contribute to the twisting torque Mz, the
Mz curve appears to flatten out much earlier. The enlargements in Fig. 24 show that for all
methods (2hp, both fp variants) both Pz and Mz vary strongly during sliding. This is an error
introduced by the discretization, as in theory Pz and Mz should be constant during sliding,
since there is no deformation change of block and sphere (only a rigid rotation is superposed
onto the existing deformation). The discretization error can be assessed from the comparison
with the refined 2hp solution that is included in Fig. 24 for reference (considering nel1 = 6 · 192

and nel1 = 163 elements, and ε = 750E0/L0). The discretization error is about as large as the
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Figure 24: 3D twisting contact: Net contact force Pz and contact torque Mz according to the
two-half-pass (2hp) and full-pass (fp) contact algorithms. Left: overview; right: enlargement.
The comparison with the refined solution shows that both algorithms lead to discretization
errors of the same order.

difference between the 2hp results. In other words, we again find that the error in the 2hp
algorithm is of the same order than the discretization error that is present anyway.

Finally, Fig. 25 displays the contact tractions during sliding (at a twisting angle of 180 degrees).
These tractions are taken from the 2hp result, employing the post-processing algorithm of [17].
As seen, a nice match is found between the traction fields on the two surfaces. This once
more demonstrates that the 2hp algorithm captures the traction continuity across the contact
interface, even though this continuity is not imposed explicitly within the algorithm.

5 Conclusion

This paper presents the extension of the two-half-pass contact algorithm of [1] to 3D friction.
This algorithm is essentially a reduction of the full-pass contact algorithm and its implemen-
tation is fairly straight forward if a working full-pass algorithm is available. The two-half-pass
algorithm does not explicitly enforce traction continuity at the contact interface. This dis-
tinguishes it from past approaches. The consequence is the appearance of a small continuity
error, which does not compromise the overall accuracy since it is of the same order as the finite
element discretization error. This was already shown for frictionless contact in [1]. Here we

26



Figure 25: 3D twisting contact: Contact pressure p (left) and tangential contact traction com-
ponents tx = tt · ex (middle) and ty = tt · ey (right), both normalized by E0, acting on the
deformed surfaces ∂B1 and ∂B2. In this view ex appears to point downward, while ey points
to the right. For clarity the two surfaces have been moved apart. The dashed line shows the
twisting axis.

have now shown this also to be true for frictional contact using a set of challenging 2D and 3D
examples. Among those are a detailed analysis of the influence of the model parameters and a
convergence analysis that demonstrates the maintained stability of the proposed formulation as
ε → ∞. Included is also a simple test case that illustrates the advantage of the two-half-pass
approach over the full-pass approach, and which is also useful to validate the implementation.
In this paper, friction is described by a new sticking formulation based on a penalty regular-
ization and a predictor-corrector algorithm. As shown, the new formulation becomes equal to
existing formulations in the continuum limit. All contact computations presented here employ
C1-continuous contact surfaces based on Hermite interpolation in 2D and NURBS interpolation
in 3D. In summary, the proposed new approach provides an unbiased algorithm for frictional
contact that is robust and highly accurate. The current approach is based on a non-mortar
contact formulation. The extension to mortar methods will be considered in future work.
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A Equivalency of friction formulations

Here we show the equivalency between the proposed trial traction formulation (25) and the
formulations of Laursen (19) and Wriggers (21) as ∆t → 0 and εt → ∞. For small ∆t, the
tangent planes at ξnp and ξn+1

p are approximately equal so that (25) turns into

ttrial
tn+1 ≈ t

up
tn + εt

(
ξαpn+1 − ξαpn

)
ap
αn+1 , (50)

where ap
αn+1 are the basis vectors of the common tangent plane. For large εt, the distance

∆ξne = ξnp − ξns is small and thus the tangent planes at ξns and ξnp are also approximately equal.
For tup

tn, defined in Eq. (24), we thus find

tup
tn ≈ εt

(
ξαpn − ξαsn

)
ap
αn+1 ≈ εt

(
ξαpn − ξαsn

)
ap
αn = tnt . (51)
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Here tαtn = εt
(
ξαpn − ξαsn

)
are the contra-variant components of tnt . Inserting Eq. (51) into

Eq. (50) reproduces either expression (21) or yields

ttrial
tn+1 =

[
tαtn + εt

(
ξαpn+1 − ξαpn

)]
ap
αn+1 , (52)

which is equivalent to expression (19).

B Tangent matrices

Here we provide the tangent matrices for the two-half-pass algorithm. These are contained in
the tangent matrices of the full-pass algorithm, which we also report here. In the latter case,
the contact force vectors, acting on the nodes of elements Γek and Γe` are given by

f eck = −
∫

Γe
k

NT
k tk dak = −

∫
Γe

0k

NT
k tk Jk dAk ,

f ec` =

∫
Γe
k

NT
` tk dak =

∫
Γe

0k

NT
` tk Jk dAk .

(53)

Note that Nk(ξ) is evaluated at the point xk = xk(ξ) on surface ∂Bk, which is integrated over,
while N`(ξ) is evaluated at the projection point xp = x`(ξp) on surface ∂B`, which depends on
xk, i.e. xp = xp(xk).
The forces f eck and f ec` depend on the deformation (or displacement) of element Γek ⊂ ∂Bhk –
the element of integration – and element Γe` ⊂ ∂Bh` – the element on the neighboring surface
where the projection point lies. It is noted that in general, for non-conforming meshes, several
elements Γe` are affected by each Γek. The dependency is expressed as f eck = f eck(u

e
k,u

e
`) and

f ec` = f ec`(u
e
k,u

e
`) where uek denotes the displacement vector of Γek and where ue` denotes the

displacement vector of all the affected elements Γe` .
The linearization of f eck at {uek,ue`} in the direction {∆uek,∆ue`} yields

f eck
(
uek + ∆uek,u

e
` + ∆ue`

)
≈ f eck

(
uek,u

e
`

)
+ ∆f eck

(
uek,u

e
`

)
,

f ec`
(
uek + ∆uek,u

e
` + ∆ue`

)
≈ f ec`

(
uek,u

e
`

)
+ ∆f ec`

(
uek,u

e
`

)
,

(54)

with

∆f eck = −
∫

Γe
0k

NT
k ∆tk Jk dAk −

∫
Γe

0k

NT
k tk ∆Jk dAk ,

∆f ec` =

∫
Γe

0k

∆NT
` tk Jk dAk +

∫
Γe

0k

NT
` ∆tk Jk dAk +

∫
Γe

0k

NT
` tk ∆Jk dAk ,

(55)

according to Eq. (53). Array N` contributes to the linearization since it is evaluated at the
coordinate of the projection point ξp. This contribution, and the rest of Eq. (55.2), are not
needed for the two-half-pass formulation. For the full-pass, where ∆N` is needed, we find

∆N` = N`,α ∆ξαp , (56)

with

∆ξαp =
∂ξαp
∂uek

∆uek +
∂ξαp
∂ue`

∆ue` . (57)

Here, as in all other equations, summation is implied on repeated Greek indices. In [1], Appendix
B, we have shown that

∂ξαp
∂uek

= cαβp ap
βNk ,

∂ξαp
∂ue`

= −cαβp

(
ap
βN` − gnnp N`,β

)
,

(58)
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where cαβp are the components of the matrix

[cαβp ] = [ap
αβ − gn b

p
αβ]−1 , (59)

where
ap
αβ := ap

α · ap
β ,

bpαβ := np · ap
α,β ,

(60)

are the co-variant components of the metric tensor and the curvature tensor at xp ∈ ∂B`.
For the change of the contact traction tk we have

∆tk =
∂tk
∂uek

∆uek +
∂tk
∂ue`

∆ue` , (61)

which is further specified in the subsections below. The last contribution, the change in Jk, is

∆Jk = Jk a
α
k ·Nk,α ∆uek , (62)

see [1], appendix D, and [32]. With the above equations we can rewrite (55) as

∆f eck = keckk ∆uek + keck` ∆ue` ,

∆f ec` = kec`k ∆uek + kec`` ∆ue` ,
(63)

where we have introduced the tangent matrices

keckk = −
∫

Γe
k

NT
k

∂tk
∂uek

dak −
∫

Γe
k

NT
k tk ⊗ aαk Nk,α dak ,

keck` = −
∫

Γe
k

NT
k

∂tk
∂ue`

dak ,

kec`k =

∫
Γe
k

NT
`,α tk ⊗

∂ξαp
∂uek

dak +

∫
Γe
k

NT
`

∂tk
∂uek

dak +

∫
Γe
k

NT
` tk ⊗ aαk Nk,α dak ,

kec`` =

∫
Γe
k

NT
`,α tk ⊗

∂ξαp
∂ue`

dak +

∫
Γe
k

NT
`

∂tk
∂ue`

dak .

(64)

We again note that in general, different elements Γe` of surface ∂Bh` are affected within the
integration.

The contact traction is composed of a normal and tangential contribution, which according to
the signs introduced in Sec. 2 combine as tk := tn − tt, thus

∂tk
∂ue•

=
∂tn
∂ue•
− ∂tt
∂ue•

, • = k, ` . (65)

The two contributions are examined in the subsections below. There, as well as above, all
quantities with subscript ` and p belong to surface ∂B`, while all other quantities, in particular
the contact tractions, are primarily associated with surface ∂Bk.

B.1 Normal contact

Here we consider the penalty method

tn = −εn gnnp , if gn < 0 , (66)
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where
gn = (xk − xp) · np , (67)

is the normal gap at xk. This formulation falls into the contact-interaction class P according
to the classification of [1]. There the tangent is derived in detail. We find

∂tn
∂uek

= −εnnp
∂gn

∂uek
− εn gn

∂np

∂uek
,

∂tn
∂ue`

= −εnnp
∂gn

∂ue`
− εn gn

∂np

∂ue`
,

(68)

with
∂gn

∂uek
= nTp Nk ,

∂gn

∂ue`
= −nTp N` ,

(69)

and
∂np

∂uek
=

1

gn

[
I − np ⊗ np − cαβp ap

α ⊗ a
p
β

]
Nk ,

∂np

∂ue`
= − 1

gn

[
I − np ⊗ np − cαβp ap

α ⊗ a
p
β

]
N` − cαβp ap

α ⊗ np N`,β ,

(70)

see [1], appendix C. Combing this we have

∂tn
∂uek

=
∂tn
∂xk

Nk ,

∂tn
∂uek

= − ∂tn
∂xk

N` + εn gn c
αβ
p ap

α ⊗ np N`,β ,

(71)

with
∂tn
∂xk

= −εn
[
I − cαβp ap

α ⊗ a
p
β

]
. (72)

We note that if gn = 0 and/or bpαβ = 0, we have cαβp = aαβp so that the expression in parenthesis
simplifies into

I − aαβp ap
α ⊗ ap

β = np ⊗ np . (73)

B.2 Tangential sticking step

For sticking, the tangential contact traction is given by

tt = εt
(
x`(ξp)− x`(ξns )

)
. (74)

Here we have omitted the superscript n+ 1 for convenience. All quantities without this super-
script are implied to be evaluated at step n+ 1. With xp := x`(ξp) we now find

∂tt
∂uek

= εt
∂xp

∂uek
,

∂tt
∂ue`

= εt

(
∂xp

∂ue`
− ∂x`(ξ

n
s )

∂ue`

)
,

(75)
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with
∂xp

∂uek
= cαβp ap

α ⊗ ap
βNk ,

∂xp

∂ue`
= N`(ξp)− cαβp ap

α ⊗
(
ap
βN`(ξp)− gnnp N`,β(ξp)

)
,

(76)

([1], appendix B) and
∂x`(ξ

n
s )

∂ue`
= N`(ξ

n
s ) . (77)

Combining the last equations gives

∂tt
∂uek

=
∂tt
∂xk

Nk ,

∂tt
∂uek

= − ∂tt
∂xk

N` + εt
(
N` −N`(ξ

n
s )
)

+ εt gn c
αβ
p ap

α ⊗ np N`,β ,

(78)

with
∂tt
∂xk

= εt c
αβ
p ap

α ⊗ a
p
β . (79)

Unless otherwise specified, all N` are evaluated at ξp. If εt = εn, several terms in Eqs. (71) and
(78) cancel and the resulting stiffness contribution is symmetric.

B.3 Tangential sliding step

For a sliding step the tangential contact traction is

tt = µ pnt , p = −εn gn , nt = ttrial
t /‖ttrial

t ‖ , (80)

where we are again skipping superscript n + 1. The trial traction ttrial
t is defined through

Eq. (74). With the help of Eq. (69) we now find

∂tt
∂uek

= −µ εnnt ⊗ np Nk + µ p
∂nt

∂uek
,

∂tt
∂ue`

= µ εnnt ⊗ np N`(ξp) + µ p
∂nt

∂ue`
,

(81)

with
∂nt

∂uek
=

1

‖ttrial
t ‖

[
I − nt ⊗ nt

]∂ttrial
t

∂uek
,

∂nt

∂ue`
=

1

‖ttrial
t ‖

[
I − nt ⊗ nt

]∂ttrial
t

∂ue`
,

(82)

where the last pieces are given in Sec. B.2 above. Combining everything gives

∂tt
∂uek

=
∂tt
∂xk

Nk ,

∂tt
∂uek

= − ∂tt
∂xk

N` + εtP
(
N` −N`(ξ

n
s )
)

+ εt gn c
αβ
p P ap

α ⊗ np N`,β ,

(83)

with
∂tt
∂xk

= −µ εnnt ⊗ np + εt c
αβ
p P ap

α ⊗ a
p
β , (84)

and
P :=

µ p

‖ttrial
t ‖

[
I − nt ⊗ nt

]
. (85)
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