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Abstract

The solution of optimization problems with polymorphic uncertain data requires to combine stochastic
and non-stochastic approaches. In this paper, a concept is presented, which allows one to consider
uncertain a priori parameters and uncertain design parameters quantified by stochastic numbers and
intervals. To solve optimization problems in structural mechanics by means of iterative optimization
algorithms (e.g. particle swarm optimization), often multiple runs of nonlinear finite element models
with varying a priori and design parameters have to be performed. For each design to be optimized,
an interval analysis in combination with Monte Carlo simulations is necessary. This can only be
realized by substituting the nonlinear finite element model by numerically efficient surrogate models.
In this paper, a strategy for neural network based surrogate modelling is presented. Instead of just
replacing the deterministic finite element simulation, it is focused on surrogate models to replace the
stochastic simulation. The approach is verified by an analytical solution and applied to optimize the
concrete cover of a reinforced concrete bridge structure taking the variability of material parameters
and construction imprecision into account.
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1 Introduction
Uncertain parameters can be quantified by stochastic distributions within the structural design process.
In [1], an overview on reliability-based design optimization approaches is presented. In general, a surro-
gate optimization problem has to be defined, because the solution of an optimization problem requires
deterministic measures. Such measures are mean values, variances or quantile values of the original objec-
tive function, which allows one to consider the robustness by optimizing the mean value and minimizing
the variability, see e.g. [2], and [3].

In addition to stochastic models, uncertain parameters can be described by intervals or fuzzy numbers.
Surrogate objectives can be formulated by means of worst case scenarios, e.g. minimizing the upper bound
of an interval objective function, in case of interval parameters or by means of defuzzified measures (e.g.
fuzzy mean, fuzzy centroid) in case of fuzzy parameters. Stochastic and non-stochastic models can be
combined to polymorphic uncertainty models within structural optimization approaches, see e.g. [4] and
[5].

In this paper, optimization approaches are presented, which allow to combine stochastic and interval
design and a priori parameters. A particle swarm optimization algorithm [6] is applied to solve surrogate
optimization problems, e.g. to minimize the worst case mean value of an objective function. This requires
to perform Monte Carlo simulations and optimization-based interval analyses of deterministic structural
simulations for each optimization run. In order to reduce the computational effort of the deterministic
simulation and the Monte Carlo simulation, artificial neural network (ANN) surrogate models are applied.
Whereas ANN surrogate models have already been developed to replace deterministic simulations within
stochastic analyses, see e.g. [7–10], or to replace interval simulations within interval stochastic analyses,
see e.g. [11], an approach for replacing the stochastic simulation with ANN surrogate models is introduced
in this paper.

After a verification test, the presented surrogate modelling strategy is applied to minimize the crack
widths of a reinforced concrete bridge structure. A nonlinear finite element model is utilized to compute
the load bearing capacity and the crack patterns of the structure. Based on the finite element simulation
results, an ANN surrogate model is trained to approximate the objective function. Within the optimiza-
tion, the Young’s modulus of concrete is modelled as a stochastic a priori parameter and the position of
the reinforcement layers are defined as interval design parameters, with a fixed radius and midpoints to
be optimized. Based on Monte Carlo simulation results of the ANN surrogate model, another ANN is
trained to replace the Monte Carlo simulation within the optimization runs.
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2 Optimization with polymorphic uncertain data
Optimization with polymorphic uncertain data means, that stochastic and non-stochastic uncertain pa-
rameters are combined to solve an optimization problem. It is classified into uncertain a priori parameters,
which cannot be optimized, and design parameters, which are to be optimized. Here, optimization ap-
proaches combining stochastic numbers and intervals are presented, which results in the following possible
parameter representations:

• uncertain a priori parameters

– stochastic numbers A
– intervals a

• design parameters

– deterministic numbers d
– stochastic numbers D
– intervals d

Whereas a stochastic number X is defined by its probability density function f (x), an interval
x = [lx, ux] is quantified by its lower and upper interval bounds lx and ux, respectively, or by its midpoint

mx = 1
2 · (lx+ ux) , (1)

and radius
rx = 1

2 · (ux− lx) . (2)

To solve optimization problems with uncertain a priori or design parameters, surrogate objectives
have to be defined, because the minimization or maximization of an objective function Z requires a
deterministic representation. In case of stochastic uncertainty, typical surrogate objectives to be optimized
are the mean value µ(Z), the standard deviation σ(Z) or quantiles of Z. The surrogate objectives can
also be combined resulting in a multiple objective optimization, e.g. minimizing the mean value and
the standard deviation of an objective function to obtain a robust optimal design. In case of interval
uncertainty, the midpoint mz, the radius rz, the lower bound lz or the upper bound uz of the objective
function can be defined as surrogate objectives, e.g. resulting in a worst case optimization, if the upper
bound of the interval objective function is minimized.

If both, intervals and stochastic numbers are considered within an optimization problem, the surrogate
objectives for stochastic uncertainty and interval uncertainty can be combined, e.g. worst case mean value
min {max {µ (Z)}}, which means that the upper bound of the mean value of the objective function is
minimized. This is visualized in Figure 1, for the combination of an interval design parameter d (with
fixed radius rd and midpoint md to be optimized) and stochastic a priori parameters. It can be seen, that
for each deterministic design d, the value of the objective function Z is a stochastic distribution with a
mean value µ(Z(d)) and for an interval design d, an interval of mean values is obtained. The optimal
design is marked by the optimal interval midpoint md.

Optimization problems with stochastic and interval parameters can be solved by two possible ap-
proaches, see Figure 2. In both approaches, four computational loops are required and in the first loop,
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Figure 1: Objective function Z of an optimization task with stochastic a priori parameters and an interval design
parameter d.
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an optimization algorithm, e.g. a particle swarm optimization algorithm [6], is applied to solve the opti-
mization problem with a surrogate objective, where also constraints can be considered. The fourth loop
contains the deterministic structural simulation. The interval dominated approach requires an interval
analysis (e.g. by using an optimization-based approach according to [12]) with stochastic realizations in
the second loop and a stochastic analysis (e.g. by using Monte Carlo simulation) in the third loop, see
Figure 2a. Within the stochastics dominated approach, a stochastic analysis with interval samples (e.g.
Interval Monte Carlo simulation [13]) is performed in the second loop and an interval analysis (e.g. by
using an optimization-based approach according to [12]) in the third loop, see Figure 2b.

interval analysis

stochastic analysis

deterministic structural simulations

optimization

stochastic

surrogate models

deterministic

interval stochastic

(a) Interval analysis with stochastic realizations (interval
dominated approach).

stochastic analysis

interval analysis

deterministic structural simulations

optimization

interval

surrogate models

deterministic

interval stochastic

(b) Stochastic analysis with interval samples (stochastics
dominated approach).

Figure 2: Computational schemes for optimization tasks with interval and stochastic parameters.

If numerical simulation techniques are applied for the second and third loops, such as the Monte
Carlo simulation for the stochastic analysis and an optimization-based interval analysis, a high number
of deterministic structural simulations (samples) are required. In case of detailed numerical models, e.g.
based on the finite element method, numerically efficient surrogate models can help to solve optimization
problems with polymorphic uncertain parameters.

3 Neural network based surrogate modelling
Several artificial neural network (ANN) approaches have been developed to approximate time consuming
FE simulations in structural mechanics, see e.g. [14]. In [15] and [16], different network architectures
are presented. Here, it is focused on feedforward neural networks. They are used to map the inputs
(realizations of the uncertain a priori and design parameters) onto the outputs (corresponding value of
the objective function). A feedforward neural network consists of an input layer, a number of hidden layers
and an output layer. The neurons of each layer have synaptic connections to the neurons in the previous
and following layers. Whereas the number of input and output neurons are given by the approximation
problem (i.e. number of design and uncertain a priori parameters and number of objective functions),
the number of hidden layers and hidden neurons have to be defined according to the complexity of the
objective functions to be approximated.

Starting from the input layer to the output layer, the signals of a neuron in a feedforward ANN are
computed by

x
(m)
i = ϕ

(m)
i

(
ν

(m)
i

)
= ϕ

(m)
i

(
H∑

h=1

[
x

(m−1)
h · w(m)

ih

]
+ b

(m)
i

)
, (3)

where ϕ(m)
i (.) is the activation function of neuron i in layer (m). The argument ν(m)

i of the activation
function contains the sum of all output signals x(m−1)

h of the previous layer (m − 1) multiplied by the
corresponding synaptic weights w(m)

ih and adding a bias value b(m)
i . Different activation functions ϕ(m)

i (.)
can be used, e.g. linear function, logistic function (sigmoid function), hyperbolic tangent function or area
hyperbolic sine function.

The weights and bias values of the ANN are determined within the network training. For the ANN
approximation of an objective function, a sufficient number of supporting points are defined (e.g. by
regular grids, random sampling or Latin hypercube sampling) to create patterns of input and output
data. The whole data set is divided into training, testing and verification data to guarantee a good
approximation performance and to avoid overfitting. Backpropagation algorithms, see e.g. [15], are the
most commonly used approaches to train an ANN by minimizing the error between the network outputs
and the desired responses at the supporting points.

In general, ANN surrogate models are used to approximate the deterministic simulation model. How-
ever, in case of simulations with polymorphic uncertain parameters, also the interval analysis or the
stochastic analysis can be replaced by surrogate models. To solve optimization problems, it would be
beneficial, if all a priori uncertain parameters are part of the neural network approximation, because they
are fixed and cannot be changed during the optimization, and just the design parameters are defined as
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ANN inputs. In Figure 2, four possible surrogate modelling strategies are shown for optimization tasks
with interval and stochastic parameters:

• surrogate model for deterministic simulation

• surrogate model for interval analysis

• surrogate model for stochastic analysis

• surrogate model for interval stochastic analysis

To replace the interval analysis, see Figure 2b, either the surrogate objective (e.g. midpoint, lower or
upper bound of the objective function) is defined as ANN output and a ANN is trained with deterministic
data or the whole interval analysis is replaced by an ANN with interval signal processing, see e.g. [17].
The second approach has been applied in [11] to replace the interval analyses within an Interval Monte
Carlo simulation.

In this paper, a concept to replace the stochastic analysis according to Figure 2a is presented. The
ANN is trained to approximate the surrogate objective (e.g. the mean value) to be minimized or max-
imized. This allows one to avoid time consuming Monte Carlo simulations during the optimization. In
case of FE simulations, it may be necessary to work with two levels of surrogates. At the first level, the
deterministic FE simulation is replaced by an ANN, which is then used to train another ANN replacing
the stochastic simulation at the second level. This means that at each supporting point of the second
level ANN, a Monte Carlo simulation is performed with the first level ANN to get the desired responses
(e.g. mean values).

Both concepts, i.e. to replace the interval analysis and to replace the stochastic analysis, can be
combined within interval stochastic surrogate models. In [18], a similar concept has been introduced to
map fuzzy bunch parameters with ANNs for fuzzy stochastic analyses.

4 Examples
4.1 Verification with analytical solution
The proposed neural network surrogate modelling approach for the stochastic simulation is verified by
an analytical solution of an optimization problem

min
{
max

{
µ
(
Z(d1, d2, D3)

)}}
, with Z(d1, d2, D3) = d1

2 + d2
2 +D3 + a1

2 +A2 + 1 , (4)

considering three design parameters (deterministic number d1, interval d2 and stochastic number D3, see
Table 1) and two additional uncertain a priori parameters (interval a1 and stochastic number A2, see
Table 2).

Table 1: Design parameters of the optimization problem according to (4).

parameter type search space
d1 deterministic [−5, 5]
d2 interval, midpoint md2 to be optimized, fixed radius rd2 = 1 [−9, 9]
D3 Gaussian, mean value µ(D3) to be optimized, fixed standard

deviation σ(D3) = 0.5
[−4, 4]

Table 2: Uncertain a priori parameters of the optimization problem according to (4).

parameter type
a1 interval, midpoint ma1 = 1.2, radius ra1 = 1.8
A2 Gaussian, mean value µ(A2) = 0, standard deviation σ(A2) = 0.75

The analytical solution of the optimization problem (4) with polymorphic uncertain parameters is
µ(Z(d1, d2, D3)) = 7 with the optimal design parameters d1 = 0, md2 = 0, µ(D3) = −4.

In [19], the optimization problem (4) has been solved by a particle swarm optimization algorithm
[6] for the interval dominated and the stochastics dominated approaches according to Figure 2. It has
been investigated, that the interval dominated approach was about 10 times faster than the stochastics
dominated approach and that for both approaches the relative deviation Zrel = Znum−Zan

Zan
of the numer-

ically computed optimum Znum with respect to the analytically computed optimum Zan converges to
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zero with an increasing number of samples of the Monte Carlo simulation. But for the interval dominated
approach, the optimum Znum > Zan, whereas for the stochastics dominated approach Znum < Zan, i.e.
the interval dominated approach is more reliable than the stochastics dominated approach, see [19].

In order to verify the presented ANN surrogate modelling approach, a feedforward neural network with
one hidden layer (4-5-1 architecture) is trained to approximate the objective function µ

(
Z(d1, d2, D3)

)
,

see Figure 3. This means that the Monte Carlo simulation loop within the optimization is replaced by
the ANN. Inputs of the neural network are realizations d1, md2 and µ(D3) of the three design parameters
and realizations a1 of the interval a priori parameter a1, see Figure 3. Here, 1296 supporting points (a
regular grid 6× 6× 6× 6 of the four dimensional input space) are used to train, test and verify the ANN
with 60%, 20% and 20% of the data, respectively. For each of the 1296 supporting points, a Monte Carlo
simulation with varying stochastic design parameter D3 and varying stochastic a priori parameter A2
is performed to obtain the corresponding target output value. In order to investigate the sensitivity of
the sample size within the Monte Carlo simulation, four ANNs are created with 1,000, 3,000, 5,000 and
10,000 samples, respectively. The prediction performance of all ANNs is of high quality with a coefficient
of determination close to 1.0.

Figure 3: Feedforward neural network for the approximation of the objective function µ (Z) according to the
optimization problem (4).

In Table 3, the relative deviation Zrel of the numerically computed optimum Znum with respect to the
analytically computed optimum Zan is presented for the four ANNs created with different sample sizes.
It can be seen, that the optimization problem can be solved with the ANN surrogate model with similar
accuracy compared to the original solution without ANN. The ANN solution could further be improved,
if more supporting points are used to generate the ANN.

Table 3: Relative deviation Zrel of the numerically computed optimum Znum with respect to the analytically
computed optimum Zan; comparison of the interval dominated approach without and with ANN surrogate model.

number of samples Zrel without ANN
[
·10−3] Zrel with ANN

[
·10−3]

1,000 7.86 3.49
3,000 3.00 3.03
5,000 2.69 −2.37
10,000 0.80 −2.43

4.2 Optimization of the reinforcement layout of a reinforced concrete bridge structure
The proposed ANN surrogate modelling approach is applied to optimize the reinforcement layout of a
reinforced concrete bridge structure. The structural system and the cross section of the two-span bridge is
shown in Figure 4. To investigate the cracking behaviour under long-term loading, the bridge is subjected
to its self weight g = 67.25 kN/m and a constant traffic loading q = 22.2 kN/m2 over the whole bridge
deck.

The load bearing capacity and the crack patterns of the structure are analysed by a finite element
model. In this model, the reinforcement bars are considered by a smeared formulation taking the bond
slip mechanism into account. The concrete material model is based on [20] and for the steel reinforcement,
an elasto-plastic model is adopted. Due to the double symmetric system and loading conditions only 1

4
of the structure has to be computed.

In Figure 5, the distribution of the internal crack variable αR is shown. In a post-processing, the
crack width wi for each finite element is calculated using the internal crack variable αR, see [21]. This
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(a) Structural system and loading.
0.45 1.151.15

0.35

0.85

1.15 0.45 1.15

(b) Cross section (A–A).

Figure 4: Two-span bridge structure (dimensions in [m]).

Figure 5: Finite element model of the bridge structure and computed crack pattern (represented by values of the
internal crack variable αR).

allows one to evaluate the exposed lateral surface of reinforcement M [mm2] based on the crack widths
at the reinforcement layers, see [19], which is defined as a durability measure in this work.

In order to minimize the exposed lateral surface of reinforcement, an optimization task has to be
solved. Within this optimization, the Young’s modulus Ec of concrete is considered as a stochastic a
priori parameter (Gaussian distribution with mean value µ = 33, 300 N/mm2 and standard deviation
σ = 400 N/mm2). The design parameters hbottom and htop (position of the reinforcement rebars with
respect to the upper and lower edge of the cross section, respectively) are defined as intervals with fixed
radii and midpoints to be optimized. To consider both, stochastic and interval uncertainty within the
optimization, the minimization of the worst-case mean value of the exposed lateral surface of reinforcement
is defined as objective

min
{
max

{
µ
(
M
(
hbottom, htop

))}}
. (5)

As a constraint of the optimization problem, the accepted failure probability with respect to the load
bearing capacity of the bridge structure is defined as Pf,tol ≤ 10−4.

In [19], optimization runs for different reinforcement layouts (number and diameter of rebars) of the
described bridge structure have already been performed for deterministic, interval and the described
polymorphic uncertain conditions, i.e. stochastic a priori parameter and interval design parameters. The
influence of the radius of the interval design parameters has been investigated in [22]. Here, it is focused
on the proposed multilevel ANN surrogate modelling approach.

Based on the results of 90 FE simulations with varying realizations of the interval design parameters
hbottom and htop and the stochastic a priori parameter Ec, two neural networks are trained to predict
the exposed lateral surface of the reinforcement M (objective function) and the load bearing capacity lbc
(to evaluate the failure probability constraint), respectively. After training and testing, the first neural
network with a 3-10-5-1 architecture is applied to compute the mean values µ (M) of the exposed lateral
surface of the reinforcement in the design space, see Figure 6a. The sensitivity of the sample size to
the objective function has been investigated. Here, 100,000 samples of the Gaussian distributed Young’s
modulus Ec are used to approximate the objective function.

To solve the optimization problem, a particle swarm optimization algorithm is applied. Here, a swarm
with six particles is used and the search for the global optimum is repeated three times. In each search
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(a) Mean values of 100,000 samples with ANN approxima-
tion of the deterministic simulation.

(b) Additional ANN approximation of the stochastic simu-
lation.

Figure 6: Objective function µ (M) in the design space (logarithmic scale).

step, for each particle an optimization-based interval analysis is required and a Monte Carlo simulation
has to be performed for each run of this additional internal optimization. In order to replace the Monte
Carlo simulation within the optimization, another neural network with 2-10-4-1 architecture is trained to
approximate the dependency of realizations of the interval design parameters hbottom and htop (inputs)
to the objective function µ (M) (output). Based on the first neural network, 6,561 supporting points
(regular 81 × 81 grid) are used to train (60%), test (20%) and verify (20%) this additional ANN with
100,000 samples of the stochastic a priori parameter Ec. The resulting ANN approximation of the
objective function in the design space is shown in Figure 6b, which shows a very good agreement with the
reference solution to be approximated, see Figure 6a. This ANN is then applied to compute the optimal
design min

{
max

{
µ
(
M
(
hbottom, htop

))}}
just by solving an optimization-based interval analysis for each

optimization run. This reduces the computation time approximately by a factor of three to four.
The results of both approaches, i.e. the ANN approximation of the deterministic simulation and

the additional ANN approximation of the stochastic simulation, are presented in Table 4 and Table 5,
respectively. The additional ANN approximation of the stochastic simulation leads to almost the same
results compared to the pure ANN approximation of the deterministic simulation. Here, the constraints
have only be checked at the end of the optimization, because the evaluation of the failure probability in
each iteration step of the optimization is too time consuming. It should be noted that for both approaches
the constraint Pf,tol ≤ 10−4 (accepted failure probability with respect to the load bearing capacity of the
bridge structure) is slightly exceeded for rhbottom/top = 10mm.

Table 4: Results of the optimization with ANN approximation of the deterministic simulation for varying interval
radii rhbottom / rhtop of the design parameters; value of the objective function max {µ (M)}, midpoints of the
best designs, computation time for three optimization runs and failure probability Pf .

rhbottom/top [mm] max {µ (M)} [mm2] mhbottom [mm] mhtop [mm] time [s] Pf

0 7.88E-05 55.0000 142.8696 20.5 2.29E-05
5 1.59E-04 60.0000 142.9992 4273.5 7.10E-05
10 4.86E-04 65.0000 140.2368 3708 1.39E-04

Table 5: Results of the optimization with additional ANN approximation of the stochastic simulation for varying
interval radii rhbottom / rhtop of the design parameters; value of the objective function max {µ (M)}, midpoints
of the best designs, computation time for three optimization runs and failure probability Pf .

rhbottom/top [mm] max {µ (M)} [mm2] mhbottom [mm] mhtop [mm] time [s] Pf

0 7.68E-05 55.0000 138.1468 7.5 1.27E-05
5 1.47E-04 60.0000 142.6607 1076.5 7.27E-05
10 4.82E-04 65.0000 140.4340 1175.5 1.39E-04
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5 Conclusions
In this paper, a neural network based surrogate modelling strategy has been presented to solve optimiza-
tion problems in structural mechanics considering stochastic and interval parameters. A first artificial
neural network is trained to approximate the deterministic finite element analysis. Based on this neural
network, a second neural network is created to replace the stochastic analysis (Monte Carlo simulation)
within the optimization runs. This surrogate modelling strategy has been verified by an analytical solu-
tion, and it has been applied to optimize the cracking behaviour of a reinforced concrete bridge structure.
The results show good approximation and prediction capabilities and a reduction of the computation
time by a factor of three to four.

In future works, the approximation quality of the surrogate models can further be improved by gener-
ating additional training and test points close to the optimal designs and close to the limit state functions
adaptively during the optimization. It would also be beneficial, if the time consuming constraints check
can be incorporated into the surrogate model for the stochastic analysis. Moreover, the whole interval
stochastic simulation could be replaced by another surrogate model, where only the design parameters
are inputs and the influence of all a priori uncertain parameters are captured by the neural network
parameters.
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