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Abstract: Damage in concrete structures initiates as the growth of diffuse microcracks that is followed
by damage localisation and eventually leads to structural failure. Weak changes such as diffuse
microcracking processes are failure precursors. Identification and characterisation of these failure
precursors at an early stage of concrete degradation and application of suitable precautionary
measures will considerably reduce the costs of repair and maintenance. To this end, a reduced order
multiscale model for simulating microcracking-induced damage in concrete at the mesoscale level
is proposed. The model simulates the propagation of microcracks in concrete using a two-scale
computational methodology. First, a realistic concrete specimen that explicitly resolves the coarse
aggregates in a mortar matrix was generated at the mesoscale. Microcrack growth in the mortar matrix
is modelled using a synthesis of continuum micromechanics and fracture mechanics. Model order
reduction of the two-scale model is achieved using a clustering technique. Model predictions are
calibrated and validated using uniaxial compression tests performed in the laboratory.

Keywords: concrete; mesoscale; reduced order multiscale simulation; microcracking; micromechan-
ics; linear elastic fracture mechanics; anisotropic damage

1. Introduction

Concrete is a heterogeneous, multiphase material with a disordered material structure
across multiple length scales. At the mesoscopic scale (10−2 m < l < 10−1 m), concrete is
characterised by coarse aggregates of various shapes and sizes embedded in a cementitious
mortar material. The morphology of the mortar matrix around the length scale of 10−3 m
is also highly heterogeneous and comprises of the hardened cement paste and the fine
aggregates (sand). At length scales smaller than 10−4 m, cement paste is characterised
by a C-S-H matrix hosting clinker phases, the CH crystal, and capillary porosity [1]. It is
well known that cementitious materials such as concrete, mortar, or cement paste contain
initial microcracks and defects, typically distributed diffusively within the material, arising
from autogeneous and drying shrinkage of the material. Subjected to external loadings,
heterogeneities such as coarse aggregates and pores induce a highly disordered stress
field within the material. Interaction of the initial stresses with the loading-induced evolu-
tion of initial defects and pre-existing microcracks results in a complex damage process
on the mesostructure of the material [2,3]. Damage in concrete initiates at defects and
pre/existing microcracks and propagates, leading to microcrack coalescence i.e., crack
localisation, eventually leading to the complete loss of the load-bearing capacity of the con-
crete structure. Despite its infinitesimal size, pre-existing microcracks and their evolution
significantly determine the behaviour of concrete subjected to external loadings. In this
context, surface tomography analysis [4,5] can be used to provide additional information on
the load induced microcracking behavior in concrete. Moreover, microcracking in concrete
initiates already at a load levels much lower than the ultimate load [6–11]. Thus, from
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a structural health monitoring point of view, detection of microcracking, which is a pre-
cursor to complete failure of the structure, can help take suitable precautionary measures
in advance [12,13]. Due to the high sensitivity of the so-called coda waves, Coda Wave
Interferometry techniques (CWI) can be used to detect weak changes such as microcracking
in concrete [14–16]. However, research in this direction is challenging and still remains at a
very early stage far from practical application.

The synthesis of computational modelling and experimental techniques can signif-
icantly accelerate the development of a reliable methodology to detect microcracking
induced damage in concrete. Having this goal in mind, this paper presents a computational
model for simulating microcracking induced damage in the pre-peak regime of concrete,
taking into account the heterogeneity of concrete at the mesoscale and, in particular, the role
of the aggregates. It is to be noted that the term ‘diffuse damage’, also called diffuse microc-
racking or distributed microcracking in the paper, is associated with the stable propagation
of preexisting microcracks caused by the mechanical load. This microcracking manifests
itself at the macroscopic level as a gradual reduction in the stiffness of concrete in the
pre-peak regime.

Several computational modelling strategies ranging from phenomenological macro-
scopic models, continuum micromechanics based models, mesoscale simulations to mul-
tiscale models have been proposed in the literature. Phenomenological damage and
plasticity-damage models (e.g., [17–23], just to mention a few) consider concrete as a ho-
mogeneous medium. They are calibrated based on stress–strain relations from tensile
and compression tests and are suitable for simulating damage and the ultimate load of
large-scale concrete structures. However, no information on the microstructural changes
during loading is included in this type of macroscopic model.

In contrast, continuum micromechanics models are able to approximately model the
interactions of the heterogeneities (e.g., microcracks, aggregates, etc.) across multiple
length scales using multi-level homogenisation schemes (see for e.g., [1,24,25]). Due to the
mean-field assumption, damage within this framework is assumed to be represented by
diffusely distributed flat or penny-shaped inclusions that are embedded in a continuous
matrix ([26–29]). The evolution of the microcrack geometry is governed by fracture mechan-
ics (e.g., [25,30]), or phenomenological damage laws [31,32]. As these models are analytical
or semi-analytical formulations, they are computationally inexpensive. On the other hand,
mesoscopic modelling approaches explicitly resolve the individual components of the
material, see, e.g., [33–42]. Mesoscale models can be formulated using a variety of discreti-
sation methods, such as the Finite Element Method (FEM) [33,34,39,43,44], the Discrete
Element Method (DEM) [45], and Fast Fourier Transform (FFT)-based homogenisation
methods [46–48]. Among these methods, the FFT homogenisation approach based on
the Lippmann–Schwinger equation has recently gained in popularity for the analysis of
materials with a complex morphology. This method allows a direct use of image-based data
structures describing materials obtained from CT scans or other imaging techniques and it
outperforms FEM and DEM in terms of computational efficiency and memory footprint.

Inevitably, the range of length scales that can be considered using computational
mesoscale models is limited. Thus, for concrete, given the wide range of length scales
involved, micromechanics-based multiscale modeling, in conjunction with model-order re-
duction techniques such as proper orthogonal decomposition [49–51], data-driven reduced-
order PSP linkages [52], and the recently introduced clustering-based homogenisation meth-
ods [53–55], is essential. The self-consistent analysis (SCA) methods proposed in [53–55]
offer high cost efficiency in terms of training data requirement and leads to a substantial
reduction of the degrees of freedoms from a few million to only a few hundred.

Goals and Structure of the Paper

The aim of the paper is to model the load induced distributed microcracking phe-
nomenon in concrete by means of a multiscale reduced order modelling approach. To this
end, we have developed a multiscale model, characterised by the combination of continuum
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micromechanics and fracture mechanics on the microcrack level and a direct computational
resolution of the mesoscale of concrete to describe load induced microcrack evolution.
We demonstrate the predictive capability of the model by validations with experimental
measurements.

The remainder of the paper is organised as follows: In Section 2, we provide key
results from the experimental program devoted to the validation of the proposed model.
Section 3 addresses the model description at the meso- and microscopic scales. In Section 4,
we present the k-means based model reduction procedure as well as a series of numerical
experiments. Proceeding to Section 5, calibration and validation procedure of the proposed
model is presented, and the results are discussed. Finally, in Section 6, we summarise the
paper and provide concluding remarks.

2. Experimental Program
2.1. Material and Specimen Preparation

In order to support and validate the proposed model, three cubes (a = 10 cm) made
of concrete and mortar serve as test specimens. We used ordinary Portland cement
with a water-to-cement ratio of 0.45 for both types of specimens, crushed aggregates
with an AB16 grading curve (Figure 1) and a cement content of 350 kg/m3 for the con-
crete (see Table 1 for a list of the raw materials in this concrete composition). The predom-
inantly quartzitic aggregates used in the material composition come from the Taunus
region in Germany and are available in four different grain sizes [0/2, 2/5.6, 5.6/8, 8/16]
mm. The aggregates were nearly purely quartzitic which is favorable in order to minimize
variations of mechanical properties due to variable minerals and their proportions. For the
mortar specimens, we added quartz powder (ϕ = 30.34%) with an average grain size
of d50% = 8 µm and an upper grain size of d95% = 25 µm to increase resistance against
shrinkage. Shrinkage-induced cracks should be prevented as specimens were tested after
more than one year to ensure almost complete hydration. The specimens have been cured
with the following conditioning procedure: After the production day (t = 0), specimens
harden for one day. Thereafter, the specimens were conditioned under water for 56 days
at T = 20 ◦C. Then, the specimens were conditioned at T = 20 ◦C and RH = 65% until the
test. It is to be noted that no considerable difference to be expected between the strength
and mechanical properties of specimens tested after one month and after one year. In this
paper, we use the terms grains and aggregates interchangeably.

Table 1. Composition of concrete standard AB16 used in the experiments.

Type Description Amount Density Volume
[-] [-] [kg/dm3] [dm3/m3]

w/c 0.45

Cement CEM I 52.5 R 350 [kg/m3] 310 112.9

Plasticizer 1.0 [m-%]

Air voids 2.00 % 0 20

Water 157.5 [kg/m3] 1 157.5

Aggregate 0/2 Quartz 39.46 [%] 2.67 280.02

Aggregate 2/5 Quartz 12.18 [%] 2.64 86.44

Aggregate 5/8 Quartz 28.91 [%] 2.64 205.13

Aggregate 8/16 Quartz 19.45 [%] 2.65 138.01

2.2. Characterisation of the Mesostructure of Concrete

The volume fractions of aggregates and air pores, along with their spatial distribution,
are key parameters for characterising the mesostructure of concrete specimens and serve
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as input data for the generation of synthetic concrete mesostructure models. For the test
specimens, an optimised aggregate composition was computed using the Generalised
Reduced Gradient Method [56] by minimisation of the residuals between the cumulative
proportions of four aggregate fractions at the specified discrete points (Figure 1) and the
ideal AB16 aggregate composition according to building standards [57,58].

Figure 1. Standardised and optimised aggregate distributions for a concrete mix with an approxi-
mated AB16 aggregate distribution.

A more refined quantification procedure of the quartzitic aggregates was also car-
ried out to extract the statistical data required for the generation of synthetic concrete
mesostructures. The resulting absolute volume fraction of each concrete constituent is
listed in Table 2. As can be seen, we further classify the aggregates into two sub-categories
according to their size: fine and coarse aggregates. Here, the ’threshold’ value is set to
3 mm. Thus, the volume fraction of cement paste matrix, fine aggregates, and coarse
aggregates are 29.259%, 22.448%, and 48.292%, respectively.

Table 2. Experimental quantification of the concrete compositions according to standard AB16.

Cement
Matrix Fine Aggregates Coarse Aggregates

Size [mm] - 0.063 0.125 0.25 0.5 1 2 2.8 4 5.6 8 11.2 16
Volume fraction [%] 29.259 1.504 1.619 1.758 1.758 3.634 12.174 5.0626 5.146 6.743 16.606 2.904 11.832
Total [%] 29.259 22.448 48.292
Total [%] 29.259 70.741

2.3. Determination of Elastic Properties of Concrete and Its Constituents

The proposed multiscale model also requires data regarding the mechanical properties
of the material composition. Thus, a series of tests were performed to determine the prop-
erties of mortar, quartzitic aggregates and concrete of standard AB16. The testing machine
is a Walter+Bai AG DB 3000/300 kN with a digital controller, Digicon 2000 (Löhningen,
Switzerland). In order to design the testing procedure, we used the materials testing
software “Proteus”. The material parameters of interest include the Young’s modulus,
Poisson’s ratio, and the compressive strength. These parameters are summarised for each
constituent in Table 3.
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Table 3. Young’s Modulus, Poisson’s ratio, and the compressive strength of the quartzitic aggregates,
mortar, and the concrete with an AB16 grading curve.

Material Parameter Quartzitic
Aggregate Mortar AB16 Concrete

Young’s Modulus E [GPa ] 84.6 27.1 48.03

Poisson’s ratio ν [-] 0.12 0.19 0.15

Compressive strength fc [MPa] 368 80.3 64.4

To measure the Young’s Modulus and the Poisson’s ratio of the quartzitic aggregates,
a uniaxial compression test is performed on a quartzitic sample of cylindrical geometry.
The cylinder with 5 cm diameter and 10 cm height was extracted from the same quartzitic
material as the concrete aggregates. The specimen is subjected to a load controlled test and
two strain gauges, arranged in a diagonal bridge circuit, were used to monitor the longi-
tudinal and lateral strains on the aggregate surface [59,60]. Anderson–Darling-Tests [61]
show a linear relationship up to 60% of the ultimate compressive strength σmax for longitu-
dinal strain and up to 30% σmax for lateral strain, assuming a normal residual distribution
between the experimental values and a linear regression function using a p-value of 5%
(see Figure 2). The derived parameters for the quartzitic aggregates are in line with data
from the literature [62], whereas the compressive strength is slightly smaller (90 GPa) and
Poisson’s ratio slightly larger (0.10) as compared to α-Quartz.

Figure 2. Stress–strain diagrams for longitudinal strain ε‖ and lateral strain ε⊥ obtained from uniaxial
compression tests on a cylindrical quartzitic specimen. The strain gauges failed before reaching the
ultimate compressive strength of 368.0 MPa. The plot also shows the Poisson’s ratio obtained from
the ratio of the lateral and the longitudinal strains.

The Young’s modulus for concrete and mortar samples is also obtained from a uniaxial
compression test. Three samples of size 10 cm3 were loaded in a displacement controlled
test with a displacement rate 0.1 mm/h. To accurately measure the true longitudinal defor-
mation of the specimens, two external strain gauges (DD1 displacement transducer) were
used. The Young’s modulus was estimated and averaged using a linear regression between
two points from the stress–strain curve, at 10% and 30% of the maximum compressive
stress. In all tests, Polytetrafluoroethylene (PTFE) films were placed between the samples
and the loading platens to reduce friction. Figure 3 shows the specimens in a sound state
and after displacement controlled compressive loading tests up to the ultimate state.
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(a) (b) (c) (d)

Figure 3. Determination of material parameters for concrete and cement paste: (a) polished concrete
specimen with a maximum grain size of 16 mm before loading, (b) cracked concrete specimen with a
strain gauge after the compressive load test, (c) polished hardened cement paste specimen before
loading, (d) hardened cement paste specimen with strain gauge after the compressive load test.

3. Scale-Bridging Modelling of Cementitious Materials
3.1. The Scale-Bridging Modelling Concept

When subjected to external mechanical loads, damage in concrete initiates from pre-
existing defects and microcracks. These microcracks grow and ultimately coalesce to form
visible macroscopic localised cracks. The growth of microcracks in concrete is completely
governed by the presence and distribution of the heterogeneities (aggregates, pores, defects,
initial microcracks, etc.). Moreover, it involves mechanisms that interact across multiple
length scales i.e., the loading is applied at the macroscopic scale, the coarse aggregates
serve as stress concentrations at the mesoscopic scale and the microcracks initiate and
start growing at the microscopic scale. In order to bridge these scales, a multiscale model
that takes into account the most essential physics contributing to the damage evolution in
concrete is required.

In this paper, a reduced order model for scale-bridging modelling of damage evolution
in concrete is formulated. Figure 4 illustrates the proposed modelling procedure. First,
we consider a representative elementary volume (REV) at the mesoscale. At this scale,
the coarse aggregates are explicitly resolved. At each mesoscopic point, an associated
microscopic representative elementary volume (REV) is incorporated. Hence, the REV at
the mesoscale bridges the applied macroscopic loading at the macroscale and the growth
of microcracks at the microscale. At the microscopic scale, the mortar solid consists of an
intact mortar matrix and pre-existing microcracks as weak inclusions. The mortar solid
is idealised as a multi-phase material with spherical fine aggregates embedded in the
cementitious matrix. Microcracks are modelled using three-sets of mutually orthogonal
penny-shaped microcrack families, see Section 3.2. At the mesoscale, concrete is explicitly
represented in a computational model as a two-phase composite consisting of a mortar
matrix and coarse aggregates. The aggregates are assumed to be linear elastic, while the
nonlinear behaviour of the mortar matrix is modelled at the microscopic scale using a
combination of continuum micromechanics and Linear Elastic Fracture Mechanics [25].

In summary, this modelling approach entails separate model descriptions at different
scales as well as the coupling relations between the scales. The interaction among scales
is realised through homogenisation and localisation procedures. In the homogenisation
process, information at lower scales is transferred to the higher scale through physically
consistent averaged quantities (e.g., macroscopic stresses, effective stiffness). Localisation
(also called concentration in the literature) is a downscaling procedure that relates strain or
stress measures across the scales.

See Appendix A for the algorithmic implementation.
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Figure 4. Schematic illustration of the multiscale computational homogenisation approach considered
in this paper.

3.2. Microscale Model: Microcracking in the Mortar Material
3.2.1. Model Description

In order to model distributed microcracking in the mortar material, we adopt the
multiscale concrete model proposed in [25]. The model is based on the synthesis of
continuum micromechanics and Linear Elastic Fracture Mechanics (LEFM) (see [30]). At the
microscale, a mortar REV of size l is considered, which is consisting of a mortar solid matrix
and microcracks as inclusions. Microcracks represent the initial defects in the mortar and
their evolution accounts for the fracture and damage mechanism at this length scale.

Three microcrack families, embedded in an “intact” mortar matrix material and
oriented in three mutually orthogonal planes aligned with the major axes, are considered
as inclusions. The geometry of these microcracks is idealised as penny-shape (oblate
ellipsoid) with aspect ratio X = a

c � 1, microcrack radius a, and half microcrack opening c.
The volume fraction of each microcrack family is evaluated as ϕcr,i = 4

3 πNiXia3
i , (i =

1, 2, 3), where Ni is the number of microcracks per unit volume. The dimensionless
crack density parameter γi = Nia3

i . Given the microcrack volume fractions and the elastic

properties of the mortar matrix Cm, the initial effective stiffness Ce f f
0 of mortar REV can be

estimated using analytical homogenisation schemes (for e.g., Mori–Tanaka scheme used in
[25,30]).

3.2.2. Microcrack Growth

When concrete is subjected to loading, the growth of microcracks is idealised in the
model as an extension of microcrack radius. Microcracks may grow only if they satisfy
the criterion:

− 1
2
Ẽ :

∂Ce f f

∂γi
: Ẽ ≤ 2π

3
g f

ai
, (i = 1, 2, 3), (1)

where E is the applied strain obtained from the mesoscale simulation. γi is the dimen-
sionless crack density parameter and g f is the microscopic fracture energy. Ẽ denotes the
equivalent strain, which is defined as the positive part of E [63]. The homogenised stiffness
Ce f f is a function of Cm, ai, Xi, and Ni.

Equation (1) involves solving a system of three coupled inequalities for the current
microcrack radius ai. The partial derivative of Ce f f with respect to the microcrack density
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parameter γi is evaluated accurately using the complex-step derivative. The computation
of ai at a given load state is computed iteratively using the Newton–Raphson algorithm as
follows. Let ri(a) be the residual

ri(a) = −
1
2
Ẽ :

∂Ce f f

∂γi
: Ẽ − 2π

3
g f

ai
, (2)

and a = (a1, a2, a3)
T denotes the microcrack-radii, then gij expresses the partial derivative

of ri with respect to aj. This derivative is approximated using the numerical derivative
technique

gij = ∇ar = ri,j, (i, j = 1, 2, 3). (3)

At iteration k, the microcrack radius increment is computed as

∆ai = ak
i − gijrj, (4)

and the microcrack radius is updated accordingly as

ak+1
i = ak

i + ∆ai. (5)

With tol being a small value close to zero (e.g., 10−6), the convergence criterion is
expressed as

ri ≤ tol. (6)

After a converged microcrack radius is computed, the reduced effective stiffness
tensor corresponding to the current microcrack configuration is updated. It should be noted
that each microcrack family is allowed to grow independently, and, therefore, depending on
the direction of microcrack growth, an anisotropy of the homogenised stiffness is induced.

3.2.3. Analysis of a Micro-Cracked Mortar REV under Uniaxial Loading Tests Using the
Mori–Tanaka Homogenisation Scheme

In order to verify the proposed microcracking model, we simulate a uniaxial ten-
sion and uniaxial compression loading on a mortar REV. The investigated mortar REV
consists of fine aggregates (sand) with a volume fraction of 35% embedded in a cement
matrix. The material stiffness for the cement matrix and the aggregates are 21.6 GPa
(taken from [24]) and 84.6 GPa, respectively. The Poisson ratio of sand inclusions is as-
sumed to be 0.2 [25]. The model parameters including the geometrical parameters are
chosen within the range proposed in [25].

A summary of input and calibrated parameters as well as the numerical results can be
found in Table 4. It is to be noted that Es and νs correspond to the elasticity parameters of
a theoretical cement paste without microcracks. These values are calibrated to obtain the
effective Young’s modulus of hardened cement paste of 21.6 GPa and Poisson ratio 0.15.

In this numerical experiment, the micro-cracked mortar REV is assumed to contain
an initial microcrack volume fraction of 11.79% with aspect ratio 17. As a consequence of
introducing initial microcracks, the mortar REV stiffness reduces to 26.9 GPa at the zero-
stress state. Figure 5 top and bottom left show the stress and strain responses of the mortar
REV subjected to uniaxial tension and compression, respectively. Under uniaxial tension,
microcrack family 1, which is oriented in a direction perpendicular to the maximum stress,
propagates. This microcrack propagation results in a significant reduction of the stiffness
in a longitudinal direction (z-direction in this particular numerical example) and a slight
reduction in the stiffness in the transversal directions. The volume fraction of microcracks
belonging to family 1 grows with increasing loads while the volume fraction of the other
(two families) remains constant.



Materials 2021, 14, 3830 9 of 31

Table 4. Summary of parameters used for the analysis of a mortar REV subjected to uniaxial loading.
The following sources have been used to determinate the parameters: 1 —Experiment (Section 2),
2—[25], 3—[64].

Material parameters

Young’s modulus of aggregates 1 Eagg 84.6 GPa

Poisson ratio of aggregates 2 νagg 0.2

Aggregates’ volume fraction ϕagg 0.35

Model parameters

Microcrack’s initial radius 2 (i = 1, 2, 3) a0,i 0.017 mm

Microcrack’s initial half thickness 2 c0,i 0.001 mm

Microcrack’s density 2 N 3.241× 104 1/mm

Young’s modulus of cement paste solid Es 44 GPa

Poisson ratio of cement paste solid 3 νs 0.25

Mortar solid microscopic fracture energy g f 6.88 N/mm

Numerical output

Young’s modulus of mortar REV Emortar 26.9 GPa

Compressive strength of mortar REV fc 54.68 GPa

Tensile strength of mortar REV ft 3.68 MPa

Ratio between Compressive and Tensile strength fc
ft

14.86

(b) Uniaxial compression (Mori-Tanaka scheme)

(a) Uniaxial tension (Mori-Tanaka scheme)

,
,

,
,

Figure 5. (Left) stress–strain relation of mortar subjected to uniaxial tension (top) and uniaxial compression (bottom).
(Center) stiffness evolution due to the propagation of microcracks. (Right) growth of the volume fraction of three microcrack
families. Microcrack propagation is modelled as the increase in microcrack radius according to the Griffith criterion.
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When subjected to uniaxial compression, microcrack families 2 and 3 grow due to the
effect of the Poisson ratio. This leads to a dramatic reduction of material stiffnesses in the
transversal directions, while Ezz reduces at a much slower rate. For the given parameter
set, under compression, microcracking initiates at a load level 38.1% of the compressive
strength. Both the computed compressive and tensile strengths are within the standard
range for mortar composite. It should be noted that the proposed micromechanics model is
computationally cheap and provides an almost instant upscaling tool, in comparison with
explicit computational modelling of discrete microcracks, and therefore is ideally suited to
be combined with a computational model at a larger scale. In addition, depending on the
direction of microcrack growth, anisotropic damage can be simulated, as this information is
directly obtained from the anisotropic homogenised stiffness tensor. A detailed parametric
study of the influence of the model parameters on various characteristics of the compression
behaviour of mortar is presented in Appendix B for interested readers.

3.3. Computational Model of Concrete on the Mesoscopic Scale

At the mesoscopic scale, concrete is idealised numerically in terms of a two-phase
composite occupying a given volume ΩM, where the subscript “M” denotes quantities at
the mesoscale. The numerical concrete specimen exhibits a periodic microstructure and is
discretised using a uniform three-dimensional grid of N3 voxels. A concrete mesostructure
generator (CMG) has been developed by authors [65] that allows an efficient computation of
voxel-based synthetic concrete numerical samples. The algorithm is capable of generating
realistic concrete periodic mesostructures given the aggregate size distribution. A Python
implementation of the Concrete Mesostructure Generator (pyCMG, [65]) is also available.

The stress and strain fields σ(x), ε(x) of a concrete REV subjected to a prescribed
macroscopic strain E0 are computed by solving the integral form of the periodic Lippmann–
Schwinger equation

ε(x)+
∫

ΩM

Γ0(x− y) : (C(x)−C0) : ε(y)dy = E0, (7)

where Γ0 denotes the periodic Green tensor of the reference elasticity tensor C0. The ex-
plicit expression of the Green tensor for an isotropic elastic reference material with Lame
parameters λ and µ in Fourier space is given as follows [46]:

Γ̂0 =
1

4µ|ξ|2 (δkiξlξ j + δliξkξ j + δkjξlξi + δl jξkξi)−
λ + µ

µ(λ + 2µ)

ξiξ jξkξl

|ξ|4 , (8)

ξi =
2πmi

N
, mi = −(N − 1)/2, ..., (N − 1)/2, (9)

with ξ and .̂ denoting the frequency vector in Fourier space and Fourier formulation of the
respective field, respectively. Equation (7) can be conveniently reformulated such that it
can be solved iteratively using fixed-point iteration [46] in Fourier space:

ε̂k+1(ξ) = ε̂k − Γ̂0(ξ) : σ̂k(ξ) ∀ ξ 6= 0, (10)

ε̂(0) = E0. (11)

For the iterative solution, strain-based convergence criterion

η =
||εk+1 − εk||
||E0||

< tol, (12)

is used.

4. Model Reduction Using K-Means Clustering

An explicit multiscale approach without using proper model reduction would result
in an explosion of the number of unknowns, especially in the case of complex three-
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dimensional microstructures. To accelerate material analysis and design, one looks for
a strategic way to reduce the computational complexity of the model, both in terms of
computation time and data storage requirement. In our work, the clustering technique
proposed by [53] is adopted. The method couples the data-driven approach using the k-
means clustering algorithm to efficiently characterise the salient features of a microstructure,
with the clustered FFT-based solver. Essentially, the methodology consists of two steps:

• Offline stage Pre-computation of a reduced-order dataset characterising the behaviour
of a given REV by decomposing the entire domain of the high fidelity REV into a set
of sub-domains (often denoted as clusters) and computing the so-called interaction
tensors DI J for all cluster pairs.

• Online stage Actual computation of the response of the REV for various loading
conditions using the reduced-order dataset obtained from the offline stage.

4.1. K-Means Model Reduction Procedure
4.1.1. Offline Stage

In the offline stage, the k-means clustering procedure was employed for grouping
voxels that deform in a similar fashion. The algorithm requires a collection of data charac-
terising the behaviour of all voxels under various loading conditions. To this end, fine-scale
simulations of six orthogonal unit loading conditions were performed on the concrete REV
and the corresponding strain fields are recorded, as suggested in [53]. In our implementa-
tion, training data in the offline stage were generated by means of the Lippmann–Schwinger
based FFT solver described in Section 3.3. Alternatively, such calculation can also be per-
formed using a commercial FEM software (e.g., [66,67]).

The metric used to group the voxels is the localisation tensor denoted as A(x),
which basically maps the local elastic response of the material to the macroscopic strain E:

ε(x) = A(x) : E. (13)

As a result, the k-means clustering algorithm groups the voxels into one cluster based
on the similarity of their localisation tensors. Full details regarding the construction of
A(x) and the k-means clustering algorithm can be found in [53].

Next, for the sake of clarity, but without going into too much detail, we shall provide
the basic formulation of the interaction tensor DI J . DI J is defined as

DI J =
1

cIV

∫
Ω

∫
Ω
X I(x)X J(x′)Γ0(x, x′)dx′dx, (14)

with cI being the volume fraction of the Ith cluster. X I is the characteristic function in the
domain of the Ith material cluster ΩI , defined as

X I(x) =

{
1 ∀x ∈ ΩI

0 otherwise.
(15)

4.1.2. Online Stage

The equilibrium stress and strain for each cluster (εI , σI) for a loading condition En
are computed using the cluster based Lippmann–Schwinger equation, re-formulated as

εn,I +
nJ

∑
J=1

DI J : (σn,J −C0 : εn,J) = En, (16)

where n, J is the number of material clusters, and Equation (16) can be rearranged so that it
can be solved using the fixed point iteration algorithm as follows:
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εk+1
n,I = −

nJ

∑
J=1

DI J : (σk
n,J −C0 : εk

n,J) + En, (17)

σk
n,J = δCk

n,J : εk
n,J . (18)

δCn,J denotes the reduced secant stiffness tensor of cluster J. The algorithmic imple-
mentation of the cluster based reduced-order simulation model is analogous to Algorithm A,
except that each cluster of mortar material is now linked with a microscopic BVP.

4.2. Numerical Assessment of the Convergence Behaviour of the Reduced Order Simulation (ROS)

In this section, numerical analyses are conducted to investigate the performance of
the proposed reduced order multiscale model. The central interests of this study are:

• The convergence behaviour of the ROS in comparison to Direct Numerical Simulations
(DNS) on a simple microstructure.

• The convergence behaviour with respect to the number of clusters on a simplified
concrete microstructure.

Two numerical samples were considered in the analysis. From these microstructures,
we generated the corresponding reduced-order microstructures with an increasing number
of clusters, as illustrated in Figures 6 and 7. The ratio between cluster count of matrix (kROS

mat )
and inclusion phases (kROS

agg ) was chosen to be 8:1. These microstructures are subjected to
uniaxial compression with a strain increment of 1× 10−5 in the z-direction.

To investigate the convergence behaviour of the ROS with respect to the DNS for
increasing loading strains, we used the following macrostress-based error criterion

η =

√
(Σ̃33 − ΣROS

33 )2

(Σ̃33)2 × 100%, (19)

where Σ̃33 is the reference macrostress (i.e., the macrostress obtained from the DNS).

(a) 313 voxels (b) 16 + 2 clusters (c) 32 + 4 clusters

(d) 64 + 8 clusters (e) 96 +12 clusters (f) 128 + 16 clusters

Figure 6. Simple 3D model structure characterised by a cube (size 3.1 cm) with one spherical inclusion
at the center and the corresponding clustered microstructures corresponding to various numbers of
clusters. The spherical inclusion has the radius of 0.64 cm and occupies a volume fraction of 4.582%.
Each color represents a different cluster label.
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(c) 32 + 4 clusters (d) 64 + 8 clusters

(e) 96 +12 clusters (f) 256 + 32 clusters

(a)

(b)

Figure 7. (a,b) Idealised concrete mesostructures considered in the second analysis. The numerical
sample of size 5.05 cm is discretised by 1013 voxels. The aggregates are modelled using polyhedrons
with an aspect ratio ranging from 1 to 1.5 and an average size of 10–15 mm. The inclusion phase
occupies a volume fraction of 9.87%; (c–f) reduced microstructures with 36, 72, 108 and 288 clusters.

4.2.1. Study 1—Comparison with DNS

Both DNS and reduced-order simulations (ROSs) were carried out for simulations of
the simplified mesoscale structure shown in Figure 6. In the case of the ROSs, six unit strain
fields were used as training data for the k-means clustering operations. All simulations
were run over 100 timesteps. Figure 8 shows the result from the comparative analysis of the
simple 3D model structure subjected to uniaxial compression for five numbers of clusters
(Figure 6b–f). It can be observed that

• in comparison with DNS, the ROSs capture the overall response in the elastic regime
(up to a strain level of 0.03%) well. In this range, an error of only 0.03–0.08% is
observed (Figure 8, right).

• The ROSs generally tend to overestimate the computed effective stress as compared
to the DNS.

• When microcracking starts in the nonlinear regime, the error increases with increasing
loading strain (Figure 8). At the loading strain of 0.1%, up to a 2% error is reported.

• As the number of clusters is increased, the reduced order simulation converges to the
result of the high fidelity simulation.

Thus, we can conclude that, for a simple mesostructure, a good convergence can be
achieved with the proposed ROS. Even a clustered mesostructure with a small number
of clusters can capture the effective behaviour of the composite well. It should be noted
that the solution of the uniaxial compression loading on this simplified mesoscale structure
using DNS requires computation of a total of 29, 791 micromechanical subproblems per load
step, as opposed to 16–128 micromechanical evaluations per load step in the case of using
ROSs. Even with a theoretical size of 313 voxels, DNS requires 164 h running on 300 threads
on a high-performance computer, as opposed to approximately 15 h computation time
(online stage) on a desktop computer for a reduced model with 144 clusters.
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Figure 8. Performance of the k-means-based reduced order scheme in numerical analyses of a simple
microstructure subjected to uniaxial compression according to Figure 6. Left: stress–strain curves
obtained from five different k-means based models, right: Relative error (measured w.r.t. the direct
numerical simulation) of the computed axial stress obtained for a different number of clusters.

4.2.2. Study 2—Convergence Analysis on a Concrete-Like Meso-Structure

In the second numerical analysis, a concrete-like mesostructural model as shown in
Figure 7, subjected to uniaxial compression, is simulated by means of the proposed mul-
tiscale reduced order model. The numerical simulation terminates, when the microcrack
volume fraction of any given mortar cluster reaches 0.99, which is assumed to be the onset
of complete material rupture. Here, the direct numerical analysis was not carried out.
Instead, the simulation result of the model with the highest number of clusters is consid-
ered as the reference result for the assessment of the error caused by choosing different
smaller numbers of clusters.

Five reduced order models with number of mortar clusters kROS
mat = 32, 64, 96 and

256 (corresponding to k = 36, 72, 108, 288, respectively) were considered for the analyses.
Herein, the number of clusters of mortar material (kROS

mat ) is used to denote the numerical
result of the associated clustered structure. Figure 9 (left) shows the stress–strain diagrams
resulting from the four analyses, and Figure 9 (right) contains the error as a function of
the strain level determined for the simulations with kROS

mat = 32, 64, 96 as compared to the
result obtained for 256 clusters. It is observed that the error increases with increasing strain
level, associated with an increasing microcracking in the microstructure, and that the error
decreases with an increasing number of clusters. A larger number of clusters results in an
improved resolution of damaging regions in the reduced REV, in particular in the vicinity
of aggregates.

Figure 9. Performance of the k-means-based reduced order scheme in numerical analyses of a
simplified concrete meso-structure according to Figure 7 subjected to uniaxial compression. Left:
stress–strain curves of four different k-means based reduced samples, right: relative error of the
computed axial stress obtained for three different numbers of clusters (Results from 256 mortar
clusters taken as reference results).
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Similar to the previous study, one can draw the following conclusions from this study:

• Simulations with a higher number of clusters entered the inelastic stage earlier and
failed earlier as well. Subsequently, the maximum compressive stress reduces with
increasing cluster count.

• A maximum 3.07% of error with respect to the reference result (kROS
mat = 256) at ’failure

strain’ is recorded.
• In comparison with the previous analysis, the effective stress–strain curves obtained

from the different analysis show a slightly larger spread. However, the discrepancy is
still within a tolerable range.

In conclusion, with increasing complexity of the microstructure, a higher number of
clusters is necessary. However, such choice should also be reasonable, as the computation
of the interaction tensor D for each cluster pair is increasingly expensive for finer meshes.

It is also of interest to examine further the damage field distribution obtained from
the ROS simulations. To characterise damage in the REV, we define a relative stiffness
parameter Ērel,i as

Ērel,i =
Exx,i + Eyy,i + Ezz,i

3E0
,

with Erel,i denoting the relative average secant stiffness of the cluster i at the current time
step. Exx,i, Eyy,i, Ezz,i are the current (degraded) Young’s moduli in x-, y- and z-directions,
respectively, and E0 is the initial Young’s modulus of the mortar cluster i. Figure 10
(bottom) visualises the stiffness degradation due to compressive loading computed in two
clustered numerical samples. At the same loading strain, the numerical sample with finer
discretisation (k = 288) yields a higher damage concentration, while it is smeared out
in the coarser discretisation. However, one observes that, in both of the fine and coarse
discretisations, regions of diffusive damage are qualitatively similar.

k = 36 k = 288

0.21 0.430.3 0.350.25 0.4

k = 36 k = 288

Figure 10. Top left and right: microcracking regions, whose average stiffness is less than 20% of
the initial stiffness, obtained from ROS simulations with kROS

mat = 32 and 256. Bottom left and right:
visualisation of mortar damage in terms of the distribution of the relative secant stiffness (Ērel,i ) at
strain = 1.65× 10−3 obtained from simulations with kROS

mat = 32 and 256.
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4.2.3. Computational Aspects

It is worth pointing out that the computation of the D tensor for each cluster pair in the
offline stage is computationally intensive. For instance, considering a model of 1013 voxels,
each DI J tensor took eight seconds of computation time on an Intel(R) Core(TM) i7-8700
CPU @ 3.20GHz with 1.83 GB memory. The code was programmed in Python language. In
the online stage, the uniaxial compression simulations of the reduced order model with
34, 108, and 288 clusters over 200 load steps took 2.92, 9.53, and 43 h, respectively. In
comparison with the DNS, a substantial speed-up is attained.

5. Model Validation: Simulation of a Realistic Concrete Mesoscale Model Subjected to
Uniaxial Compression

In this section, a reduced ordered multiscale simulation of a concrete specimen sub-
jected to uniaxial compression is performed. The modelling strategy consists of the fol-
lowing four steps. First, a virtual concrete mesostructure is generated according to the
measured aggregate size distribution of concrete (standard AB16). Second, the material
properties of the material constituents are specified. The third step is the determination of
the localisation tensors for each voxel in the mesostructure for the k-means based domain
decomposition procedure (offline stage). Finally, a simulation of the mesoscale model sub-
jected to uniaxial compression is performed on a synthetic concrete sample, and the model
predictions are compared with experimental data (online stage).

5.1. Simulated Concrete Sample

A virtual concrete mesostructure corresponding to the concrete standard AB16 is
generated using PyCMG [65], an opensource concrete mesostructure generator. The sample
consists of 2013 voxels with the smallest and largest aggregate sizes of 3, and 16 mm,
respectively. In total, an approximate 47.75% coarse aggregate is explicitly resolved and
thus the remaining 22.25% fine aggregate content (<3 mm) is implicitly incorporated into
the mortar matrix via continuum micromechanics homogenisation. Figure 11 (bottom)
shows a comparison of the synthetically generated concrete mesostructure and the actual
concrete specimen. It is noteworthy that it takes only 201 s on a standard computer to
generate the above virtual specimen. For interested readers, further details regarding the
generation procedure involving geometrical parameters as well as the realistic aspects of
the virtual concrete specimen are described in [68].

(a) Mortar + aggregates (b) Only aggregates

(c)  Simulated specimen (slice) (d) Actual specimen (slice)
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Figure 11. Box 1: Visualisation of the numerical concrete sample representing a specimen of size 10 cm
(top), and qualitative comparison between slices of virtual and actual samples (bottom), Box 2: Cumula-
tive volume distribution of aggregates (top) and size distribution of the quartzitic particles (bottom).
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5.2. Calibration of the Parameters of Mortar Constituents

At the mesoscale, while the material properties of the aggregates are measured di-
rectly in laboratory tests, the material properties of the considered mortar matrix is to be
determined. To this end, using the material data obtained from the experiment, we proceed
to calibrate the model parameters at the constituents of mortar, i.e., the cement paste and
the fine aggregates, according to the following calibration strategy:

• We use experimental data from the mortar samples (ϕquartz = 30.34%) to calibrate the
microscopic constituents parameters such that the Young’s modulus and compressive
strength of the mortar REV match the experimental stress–strain curve. The pa-
rameters to be calibrated include the Young’s modulus of the cement paste solid
Es, the microcrack volume fraction ϕc and their aspect ratio X, and the microscopic
fracture energy g f . Figure 12 shows the calibrated (homogenised) stress–strain curve
of the mortar REV in comparison with the experimental stress–strain curve.

• In the numerical concrete sample (Figure 11a), the mortar matrix contains cement
paste and fine aggregates with the relative proportion of ϕcem

ϕquartz
= 29.56

22.25 between the
two material phases. Thus, ϕquartz in mortar matrix equals 43.95% and differs from
the actual mortar sample. We assume the content of microcracks is identical for the
same cement mixture. The effective Young’s modulus of mortar matrix is obtained,
by setting ϕquartz = 43.95% instead of 30.34%, while the other parameters are kept
unchanged. As a result, the mortar matrix of the simulated concrete has a Young’s
modulus of 30.05 GPa. At this scale, the fine sand grain inclusions are assumed to
have a spherical geometry. A summary of the parameters is contained in Table 5.

Experiment
Mori-Tanaka Model

Figure 12. Comparison of the calibrated stress–strain curve with the experimental data of a mortar
sample (ϕquartz = 30.34%). The micromechanics based model predicts the initiation of microcracking
in mortar sample at a strain level of 8× 10−4.

In Table 5, the parameters listed in the group Material parameters are obtained from the
laboratory investigation reported in Section 2. As the name indicates, Model parameters lists
micromechanics parameters, which are to be calibrated. It is worth mentioning that the
Young’s modulus and the Poisson ratio of cements paste solid is referred to as the elastic
parameters of the theoretical intact cement solid without microcracks. Thus, these values
are higher than the experimental range for real hardened cement paste with pre-existing
microcracks. By introducing microcracks (ϕc = 8.3%) and fine aggregates (ϕ = 30.34%),
the effective properties of mortar at zero-stress state reduces to 29.8 GPa and 0.124, as shown
in the group Homogenised parameters. These values match the experimentally measured
range of values for mortar (Figure 12).
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Table 5. Material parameters for the large quarzitic aggregates and the calibrated parameters for
mortar, containing a volume fraction ϕquartz = 30.34% of fine quarzitic aggregates. The mortar
matrix is assumed to contain a 8.3% volume fraction of initial microcracks with an initial aspect
ratio of 23. In the investigated concrete sample, the material properties of the mortar matrix with
a volume fraction of ϕquartz = 43.95% are determined by varying the volume fraction of aggregate
accordingly in the Mori–Tanaka based homogenisation procedure, while keeping other parameters
unchanged (group Model parameters). The following sources are used to determine the parameters:
[1−3]—Experiment, [4,5] aspect ratio is taken within the range measured in [69], 6—[24,70].

Material parameters (from laboratory tests)

Young’s modulus of aggregates 1 Eagg 86.4 GPa

Poisson ratio of aggregates 2 ν 0.12

Volume fraction of aggregates 3 ϕagg 0.3034

Model parameters

Microcrack initial radius 4 (i = 1, 2, 3) a0,i 0.023 mm

Microcrack initial half thickness 5 c0,i 0.001 mm

Microcrack’s density N 1.25× 104 1/mm3

Mortar solid microscopic fracture energy g f 6.61 N/mm

Young’s modulus of cement paste solid Es 49 GPa

Poisson ratio of cement paste solid 6 νs 0.23

Homogenised parameters

Young’s modulus of mortar Emortar 29.8 GPa

Poisson ratio of mortar ν 0.124

Compressive strength of mortar fc 81.34 MPa

It is also of interest to estimate the effective elastic properties of the numerical concrete
sample, given that the morphology of the mesostructure and the elastic properties of all
constituents are known. A FFT-based computational homogenisation was performed on
the numerical concrete sample. From the resulting effective stiffness tensor, we obtained
effective material constants at the concrete level listed in Table 6. In comparison with
the laboratory test, the Young’s modulus of the virtual concrete sample is approximately
4.7% larger, which is considered as satisfactory agreement. The Poisson’s ratio is slightly
smaller as compared to the test. Due to the stochastic arrangement of the aggregates in the
synthetic concrete sample, a slight anisotropy of the Young’s modulus in axial and lateral
direction with a ratio of 1.003 is obtained.

Table 6. Homogenised elastic properties of the synthetic concrete sample in comparison with
experimental data obtained from a uniaxial compression test.

Volume Fraction
[%]

Average Modulus of
Elasticity [GPa]

Poisson’s Ratio
[-] Anisotropy

[-]
Model Exp. Model Exp.

47.74 50.311 48.03 0.124 0.152 1.003

5.3. Offline Training Stage

In the offline stage, we used the six unit strain fields obtained from the FFT-based
homogenisation step as training data to evaluate the similarity in the mechanical behaviour
of all voxels. Intuitively, two additional strain fields as training data were included in
the k-means clustering step, as suggested in [55]: (i) the local strain field under uniaxial
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compression in the z-direction (see Figure 13 right), and (ii) the positive component of
the strain field during uniaxial compression in the z-direction. In this numerical analysis,
the high fidelity mesostructure is decomposed into 72 clusters, with the ratio between the
number of matrix clusters and the inclusion clusters chosen as 8:1. This is motivated by the
priority of capturing the damage evolution in the mortar matrix (Figure 13 (left, center)).
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Figure 13. Left and center: Visualisation of the clustered mesostructure of the virtual concrete
specimen obtained from the k-means cluster algorithm, Right: One of the strain components (εxx)
that was used to compute the clusters shown in the image on the left, the red color indicates high
values of positive strain components, which correlates with microcracking.

This choice of the cluster configuration results in the computation of 722 = 5184 cluster
pairs. An average computation time for each DI J tensor took 55 s and 17.3 Gigabyte RAM.
In our implementation, the computation of interaction tensors was performed in parallel
on a high performance cluster using 50 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz. The
total computational time was approximately 43 min.

5.4. Simulation of a Uniaxial Compression Test on the Virtual Concrete Sample

With the preparations accomplished in the offline stage, simulation on the reduced
mesostructure subjected to uniaxial compression can be performed. The uniaxial load
condition is simulated by restricting the macroscopic strain component Ezz to a prescribed
value, and setting the macroscopic stress components perpendicular to the z-direction to
zero. The strain increment is prescribed as 1× 10−5. The simulation terminates when the
microcrack volume fraction of one cluster reaches 0.99, which is assumed to be the onset of
complete failure in material. It is to be noted that the multiscale homogenisation method,
by following the scale separation principle [71], is restricted to the pre-peak regime of
concrete. Possible remedies are also proposed in [72–74]. However, it is beyond the scope
of the study.

The macroscopic stress tensor at load level E is recorded and evaluated as

ΣMacro =
Nclusters

∑
1

cIσI ,

where cI and σI are the volume fraction and mesoscopic stress tensor of a cluster I, respectively.
Figure 14 (top left) shows the stress–strain curve predicted from the reduced order

multiscale model and a comparison with experimental data. We can observe that the
initial portion of the curve up to approximately 50% of the measured compressive strength
agrees well with the measure curve. However, the proposed multiscale model leads to an
overestimation by 13.4% of the material strength. Several reasons may be responsible for
this deviation. One reason possibly lies in the calibration of the parameters for the mortar
matrix according to measurements of separate mortar specimen, which are characterised
by a different volume fraction of fine aggregates as compared to the one used in the
concrete specimen (see also respective comments in Section 5.2). Another possible cause
may be connected with the influence of initial defects at mesoscale, in particular the
interfacial transition zone (ITZ), which play a significant role in the damage process in
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concrete. The ITZ, however, is not yet separately considered in the current modelling
approach. Finally, the choice of the analytical homogenisation scheme at the microscale
(currently, the Mori–Tanaka scheme) might play a role. The role of the micromechanics
homogenisation scheme will be further investigated in Section 5.6.

A B C

Model prediction (MT)

Experiment

A

B

C

D

E

F
Microcrack initiation at 15.89 MPa

E F

1.3x10-4 0.05 0.1 0.15
d

0.23 0.76d 0.45 0.89d0.391.3x10-4 d

0.940.54 d 0.58 0.97d 0.64 1.0d

D

Figure 14. Top left: Stress–strain curves obtained from the simulation (blue line) and the experi-
ment (black lines), Top right: Visualisation of damage distribution at a microcrack initiation state.
From (A–F): Opening of vertically oriented microcracks in the mortar matrix at six different load
levels (25.77, 37.05, 47.06, 55.88, 63.41, 73.71 MPa, red color indicates active microcracking regions).

5.5. Interpretation of Numerical Results

To examine the evolution of the stiffness degradation due to microcracking, the effec-
tive secant stiffnesses in three orthogonal directions were recorded for all clusters at each
load step. To show the effect of microcracking on the transversal stiffness degradation of
each cluster, we introduce the damage parameter dlat:

dlat = 1−
0.5(Exx + Eyy)

E0
,
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where Exx and Eyy are the current secant Young’s moduli in x and y-directions, respectively,
and E0 denotes the initial concrete stiffness. dlat = 0 indicates no damage, and dlat = 1
denotes a complete loss of transversal stiffness of the respective cluster.

From the stress–strain curve (Figure 14 (top left)), it can be seen that the initial mi-
crocracks start propagating at a strain level of 3.153× 10−4, corresponding to a loading
level of 15.89 MPa (20.37% of the compressive strength). In contrast, damage initiation in
the calibrated mortar REV is recorded at a much later stage (ε = 8× 10−4). This indicates
that, due to the heterogeneity of the material, the threshold value of strain state that triggers
propagation of existing microcracking is reached already at a relative low loading level
of loading in several regions of the mesostructure. Such early initiation of damage is
also confirmed by several non-destructive tests on concrete [75,76]. Figure 14 (top right)
highlights the regions exhibiting the start of microcrack propagation.

Figure 14A–F illustrates the damage evolution in x- and y-directions with increasing
loading level. All clusters connected with the mortar material exhibit a gradually increasing
growth of microcracks parallel to the loading direction, leading to an anisotropic reduction
in the macroscopic secant stiffness. This is corroborated by Figure 15 (top), which shows
the evolution of the secant stiffnesses both in axial (z) and lateral (x) directions. As seen in
Figure 15 (top left), the lateral stiffnesses (in x- and y-directions) of all clusters decrease at a
much faster rate in comparison with the longitudinal one due to the growth of microcracks,
whose orientation is parallel to the major stress axis. Moreover, a closer inspection into
the spatial distribution of damage in the mortar matrix reveals that microcracking takes
place predominantly in the immediate vicinity of the aggregates, caused by the stress
concentration in these regions of the mesoscale structure. In addition, these degrada-
tion mechanisms revealed by the multiscale reduced order model is in agreement with
experiment observations [75].

Figure 15. Top left: relative stiffness evolution under uniaxial compression of all mortar clusters
in x- and z-directions. Top right: relative macroscopic secant stiffness of concrete under uniaxial
compression at macroscopic scale. Bottom: volume fraction of microcracks, in all mortar clusters
(left), and total volume fraction of microcrack in concrete samples (right).
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Recording the microcrack volume fraction provides information on the damage evo-
lution in the clusters as well as in the complete mesostructure of the virtual concrete
specimen. Figure 15 (bottom left) shows the evolution of the microcrack volume fraction in
all clusters during compressive loading. At ultimate load, the microcrack volume fraction
in one cluster reaches a value of 1. Comparing Figure 15 (bottom left) and (bottom right),
one observes that this state corresponds to a 25% total microcrack volume fraction in the
virtual concrete sample.

Once microcracking initiates, the model is also able to predict an increase of the
apparent Poisson’s ratio, defined as the ratio between the transversal and axial strain,

νmacro = −
εmacro,xx

εmacro,zz
, (20)

(Figure 16). It shows a nonlinear increase of the Poisson’s ratio as soon as microcracks
are starting to propagate. This effect also was observed in laboratory tests [77].

Figure 16. Predicted evolution of the apparent Poisson ratio with increasing load level.

5.6. Improvement of the Model by Means of the Modified Interaction Direct Derivative Scheme
(MIDD)

As already discussed above, the choice of the homogenisation scheme for the mortar
matrix material at the microscale may have a strong influence on the predicted response
of concrete at the macroscopic scale. As can be seen in Figures 5 and 12, in the post-peak
regime, the reduction of stiffness in the longitudinal direction is relatively steady, which
results in a prolonged stress–strain curve. An overestimation of concrete compressive
strength can be attributed to the Mori–Tanaka homogenisation scheme as the matrix
material is always assumed to be “connected” and the spatial distribution mimics that of
the inclusion shape [78].

To replicate a more brittle behaviour of the mortar matrix, we now investigate using
the Interaction Direct Derivative homogenisation scheme [79] (IDD) in this subsection as
an alternative scheme. The IDD scheme allows consideration of not only the microcrack
morphology, but also the spatial distribution of microcracks, which is proven to play a
significant role in damage behaviour of cracked solids (see, e.g., [29]).

The distribution of the microcracks is determined by the shape of a “double cell”
surrounding a microcrack (see Figure 17). The shape of the double cell surrounding a
crack has a clear physical meaning and often is idealised as an ellipsoid. In our model,
we assume that the microcrack distribution takes the form of an oblated spheriod and is
coaxial with the associated microcracks, as illustrated in Figure 17. Given three microcrack
families with radius a, half thickness c and crack density N , the geometrical parameters
characterising the double cell for a certain microcrack family i are the double cell radius aD
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and the half thickness cD. We denote XD,i =
aD
cD

as the aspect ratio of the cell. An explicit
formulation [80] for estimating the stiffness is given as

CIDD
hom = Cmat +

(
Is −

3

∑
i

ϕiAdil
i : PD

i : (Ci −Cmat)
)−1

:
3

∑
k

ϕk(Ck −Cmat) : Adil
k , (21)

Adil
i = (Is + Pi : (Ci −Cmat))

−1, (22)

PD
i = SD

i : Dm, (23)

where PD
i is the Hill Polarization tensor corresponding to the double cell i. The superscript

D denotes quantities belonging to the distribution (i.e., the double cell) of the microcracks.
When the geometry of the distribution is identical to that of the microcracks, the prediction
of the IDD and Mori–Tanaka schemes is identical. Assuming zero stiffness for the three
crack families yields

CIDD
hom = Cm −

(
Is +

3

∑
i

ϕi(Is − Si)
−1 : SD

i )
)−1

:
3

∑
k

ϕkCm : (Is − Sk)
−1. (24)

When the external load reaches a critical value, pre-existing microcracks start propa-
gating. As the microcrack distribution in the IDD model is governed by the double cell
that encloses the microcrack, we assume that this double cell evolves to accommodate the
microcrack. Eventually, the microcrack distribution flattens and follows the penny shape of
microcracks. The concept of an evolving microcrack distribution was suggested by various
analyses, such as [29,79,80]. It is found that, in order to capture the characteristic softening
behaviour of mortar, (i) the growth of the double cell has to be in proportion with the ratio
between Xi and XD,i, and (ii) the growth rate of the double cell is higher than the growth
rate of crack family i.

ac= a

Figure 17. Schematic illustration of the IDD homogenisation scheme.

To control the growth of double cell Di, we introduce a dimensionless parameter
κ. When subjected to an applied macrostrain E , the current crack radius ai is evaluated
according to the procedure described in Section 3.2.1. The growth of the double cell
determining the microcrack distribution is computed as

aD,i = ai
Xi

XD,i
κi, (κi > 1). (25)
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A calibration procedure was undertaken to obtain parameters for the double cell
i.e., the microcrack distribution, which are able to realistically replicate the response of a
mortar sample subjected to uniaxial compression. According to this calibration procedure,
the initial aspect ratio XD and distribution growth rate κ of crack distribution are found to
be 12 and 1.05, respectively. All remaining microscale parameters are kept unchanged and
listed in Table 5.

Figure 18 shows the stress–strain diagram of mortar sample obtained from the model
using the modified IDD estimated with the calibrated double-cell parameters. In com-
parison with the Mori–Tanaka estimate (MT) (also shown in Figure 18), we see that a
more brittle behaviour of mortar is obtained from the MIDD scheme. As this experiment
was used for calibration, the compressive strength is well replicated. In the post-peak
regime, a brittle response is predicted. It should be noted that the simulation terminates
as the point where the homogenised stiffness becomes negative, predicted by the MIDD
scheme. As soon as the stress–strain curve enters the softening branch, a sudden drop in
stress is observed. Using the modified IDD scheme predicts failure of the mortar material
at a microcrack volume fracture of 0.7, while, in the MT estimate, the material fails at a
microcrack volume fraction 1.

Figure 18. Left: Computed stress–strain response of mortar subjected to uniaxial compression using
the calibrated MIDD scheme (green) in comparison with the experimental range (grey) and calibrated
Mori–Tanaka scheme (blue). Center: Evolution of stiffnesses in x and z-directions, respectively. Right:
Evolution of microcrack volume fraction.

The modified IDD scheme has also been applied to simulations of the virtual concrete
sample subjected to uniaxial compression, which has been investigated before in Section 5
using the MT homogenisation scheme on the microscale of the mortar matrix. The parame-
ters for the double cell calibrated before for mortar material are used, and all remaining
parameters are identical to those listed in Table 5.

The stress–strain diagram obtained from this modified micromechanics-reduced order
meso-scale model for concrete is shown in Figure 19 and compared with the previous
result from the model using the Mori–Tanaka scheme and the experimental results. Now,
the peak load is in much better agreement with the compressive strength of the concrete
sample recorded in the laboratory, with a deviation of only 3.52%. Interestingly, above 93%
of the peak load, the stress–strain curve is no longer continuous. This is attributed to a
combination of disorder at the mesoscale and the rapid reduction in longitudinal stiffness
after peak stress (Figure 18 center).
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Figure 19. Stress–strain response of concrete numerical sample obtained from Mori–Tanaka scheme
(blue), modified IDD scheme (green), in comparison with the experimental range (grey).

6. Conclusions

In this work, a reduced order multiscale model for computational simulations of dis-
tributed microcracking in concrete on the mesoscale has been presented. Within the mortar
matrix, a continuum micromechanics model takes into account pre-existing microcracks,
which may propagate according to the Griffith criterion. This continuum micromechanics
model in conjunction with a fracture energy model for crack propagation was incorporated
into a computational mesoscale model of concrete. At this scale, a numerical model is pro-
posed, which realistically resolves the coarse aggregates and its size distribution. To reduce
the computational costs for high resolution multiscale simulations, a k-means based model
reduction technique [53] has been employed. First, a synthetic concrete mesostructure has
been generated from the size distribution of coarse aggregates determined in the laboratory.
Next, the parameters of the micromechanics based microcracking model that governs the
behaviour of the mortar material have been calibrated using experimental data for the
individual constituents, i.e., the cement paste, the fine aggregates in the mortar matrix,
the initial microcrack volume fraction in the initial state (due to autogeneous shrinkage),
and the coarse aggregates. Finally, the two scale reduced order concrete model has been
validated by means of data from uniaxial compression tests performed in the laboratory.
Based on the results, the following conclusions can be drawn:

1. It was observed that the Mori–Tanaka scheme, which has been used in the initial
model design at the micro-level, overestimates the compressive strength of concrete.

2. In order to improve the model predictions, the Mori–Tanaka scheme governing mi-
crocracking at the microscale has been replaced by an improved interaction direct
derivative scheme [79]. This model is able to incorporate information on the microc-
rack distribution, which, however, needs additional calibration effort.

3. After calibration of the additional distribution-related parameters, model predictions
of the improved model for the uniaxial compression test have substantially improved,
with a deviation of only 3.2%.

4. The proposed model has been proven to be capable of simulating anisotropic microc-
rack evolution, leading to anisotropic stiffness degradation on the macroscopic level.
In addition, the evolution of the Poisson’s ratio during loading could be predicted.
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Nevertheless, the model should also be extended to account for the interfacial transi-
tion zone (ITZ). This will enable the investigation of the effect of ITZ on the overall behavior
of concrete. Lastly, two potential practical applications are also outlined:

1. Due to the multiscale nature of the proposed model, it can be used to simulate a
wide variety of concrete compositions by simply altering the predominantly physi-
cally measurable microscale and mesoscale parameters governing the topology and
material properties of the required concrete composition. Thus, the proposed mod-
elling framework can be the basis of a Virtual Material Testing Environment and can
collaboratively aid in the development of concrete with a better performance.

2. From a structural health monitoring view point, the outcome of the model can serve
as a high-fidelity input for an ultrasonic-wave propagation numerical investigation of
damaged concrete (see, e.g., [81–83]). This, in turn, can support the development of
an ultrasonic wave based technology (the so-called coda wave) on early detection of
(diffuse) damage in concrete.
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Appendix A. Structure of Hierarchical Numerical Simulation of the Multiscale Model

Algorithm A1: Structure of hierarchical numerical simulation of the multiscale
model (High-fidelity model).

Data: Microstructure, Emat, Einc, νm, νinc
Input : ∆E33, NSTEPS, tol
Initilization : n = 0, ΣM

0 , E0
M = 0, σM

0 , εM
0 = 0

1 for n = 1→ NSTEPS do
2 Update loading strain: En+1 or Σn+1
3 for k = 1→ max_iter do
4 Solve for mesoscopic stress and strain fields
5 Solving BVP for stress and crack growth at each mesoscopic material point:
6 for all voxels of mortar material do
7 Update the applied strain: ε̃n+1
8 Check crack growth criteria (Equation (1))
9 Compute crack growth (See Section 3.2.1)

10 Compute effective stiffness tensor: Ce f f

11 end for
12 Update effective secant stiffness tensor at all mesoscopic material points

δCk
n(x)

13 Compute macroscopic stress and strain tensors: Ek+1
n+1 or Σk+1

n+1
14 Check if macroscopic boundary condition fulfilled
15 k← k + 1
16 end for

Output : Σn+1, σn+1(x), εn+1(x), Cn+1(x)
17 n← n + 1
18 end for

Appendix B. Parametric Study of Mori–Tanaka Based Damage Model of Cementitious
Composite

In this analysis, we investigate the effect of the initial aspect ratio X, the microscopic
fracture energy g f , the crack density N , and the Poisson ratio of the mortar solid νs.
Here, the mortar solid refers to the mortar composite without the microcracks. Given the
microcrack volume fraction and the microcrack geometry, the effective stiffness of the
mortar REV can be computed using the Mori–Tanaka homogenisation scheme and is given
by the following expression:

Ce f f = Cm −
3

∑
i=1

ϕcr,iCm : AMT,i, (A1)

and the effective stress as the mesoscale is evaluated using

σ = Ce f f : E . (A2)

Here, AMT,i is the Mori–Tanaka strain localisation tensor of microcrack family i,

AMT,i = AD,i : (AD,i ϕcr,i + Is ϕm)
−1, (A3)

AD,i = (Cm −Ccr,i)
−1 : Cm : ((Cm −Ccr,i)

−1 : Cm − Scr,i)
−1. (A4)

Assuming zero stiffness of all microcrack families, Equation (A4) is simplified as

AD,i = (Is − Scr,i)
−1. (A5)

The parameter range chosen for the subsequent study is listed in Table A1.
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Table A1. Summary of parameters used for the parametric study.

Model Parameters

a0,i 15, 20, 23, 26, 30 µm

c0,i 1 µm

N 1.25, 1.5, 1.75, 2, 2.6, 2.75 ×104/mm3

g f 2, 2.5, 3, 3.5, 4, 4.5 N/mm

Esolid 43 GPa

νsolid 0.3

The first analysis is regarding the influence of the aspect ratio. In the micromechanical
model, the aspect ratio is controlled by modifying the initial crack radius, while crack
thickness is held constant in all simulations. In general, the absolute size of a penny-shaped
microcrack is irrelevant, at least from the point of view of the mathematical formulation.
The choice of the microcrack dimensions should nevertheless follow the principle of the
separation of scales. The effect of aspect ratio is taken into account via the computation of
the internal Eshelby tensor for that associated crack family. As can be seen in Figure A1
(top-left), by increasing the size of the microcrack radius, a reduction in the compressive
strength is observed.

(a) Aspect ratio (b) Microscopic fracture energy gf

(c) Crack density (d) Matrix's Poisson's ratio
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Figure A1. Parametric study: effect of model parameters at a microscopic scale on the compressive
response of mortar REV.

Moreover, due to the increase in the microcrack radius, the initial volume fraction
of microcracks is also higher, thus it leads to a significant reduction in the initial stiffness
of the mortar REV. We see that mortar whose microcrack’s aspect ratio of higher value
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exhibits a more prolonged nonlinear stress strain curve. This effect is not trivial and can be
explained as follows: an increase in the aspect ratio leads to a reduction of the Poisson ratio
of the microcracked mortar, according to the Mori–Tanaka homogenisation scheme. Thus,
in uniaxial compression, given a constant applied strain, the ratio between the positive
components of strain tensor and the maximum strain components is smaller, thus the crack
grows at a much slower rate.

The influence of the microscopic fracture energy parameter g f is shown in Figure A1
(top right). A smaller value of g f yields an earlier microcrack initiation and, subsequently,
lower compressive strength. The elastic property or the REV is not affected by this parameter.

Meanwhile, a high value of microcrack density N has a negative effect on both initial
stiffness and the compressive strength. However, the parameter is insensitive to the strain
value at peak stress. Lastly, material parameter νs has a strong influence on the elastic
limit strain and the compressive strength. Higher value of νs leads to earlier microcracking
and failure due to faster lateral expansion. In contrast, a parametric study under uniaxial
tension reveals that the (only) most sensitive parameter is g f . The tensile strength of mortar
increases with increasing g f . Of all studied parameters, the initial aspect ratio or the initial
microcrack radius appears to be highly influential on the compressive behaviour of the
composites as compared to other parameters. It can be seen that the model is capable of
simulating a wide range of stress–strain behaviour of cementitious materials.
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