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Abstract: There is an increasing need for the development of novel technologies for tunnel construction
in difficult geological conditions to protect segmental linings from unexpected large deformations.
In the context of mechanized tunneling, one method to increase the damage tolerance of tunnel linings
in such conditions is the integration of a compressible two-component grout for the annular gap
between the segmental linings and the deformable ground. In this regard, expanded polystyrene
(EPS) lightweight concrete/mortar has received increasing interest as a potential “candidate material”
for the aforementioned application. In particular, the behavior of the EPS lightweight composites
can be customized by modifying their pore structure to accommodate deformations due to specific
geological conditions such as squeezing rocks. To this end, novel compressible cementitious EPS-based
composite materials with high compaction potential have been developed. Specimens prepared from
these composites have been subjected to compressive loads with and without lateral confinement.
Based on these experimental data a computational model based on the Discrete Element Method
(DEM) has been calibrated and validated. The proposed calibration procedure allows for modeling and
prognosis of a wide variety of composite materials with a high compaction potential. The calibration
procedure is characterized by the identification of physically quantifiable parameters and the use of
phenomenological submodels. Model prognoses show excellent agreement with new experimental
measurements that were not incorporated in the calibration procedure.

Keywords: compressible cementitious materials; confined compression; Discrete Element Method;
deformable grout

1. Introduction

Difficult geological conditions such as “squeezing rock” [1,2] can induce severe damage to tunnel
construction. In general, the time-variant soil deformations increase continuously after completion of
the tunnel structure and may severely affect the long term integrity and safety, leading eventually to
the complete loss of operability of the tunnel [3]. One possible approach to avoid this substantial risk of
damage is the incorporation of lining materials that are highly compressible [4–7]. These compressible
lining materials accommodate large deformations after a certain threshold level of stresses is reached.
By allowing the ground to deform, the squeezing pressure acting on the regular concrete tunnel
linings will be reduced. Thus, highly compressible lining materials can serve as cushions that protect
the regular concrete linings from deterioration. A compressible segmental lining system can be
realized either by arranging one or more compressible layers between the lining and the ground
(radial compressible systems) or by introducing deformable elements between regular concrete linings
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(longitudinal/circumferential compressible systems), see in [8] for a discussion on the comparison
of various compressible segmental lining systems. Radially compressible systems are in general
comprised of a regular rigid cementitious segmental lining, optionally a compressible layer that is
attached to this lining during pre-fabrication and a compressible grout that is used to fill the annular
gap. A compressible grouting material, in addition to being highly compressible, must satisfy the usual
requirements of gap grouting materials. Various compressible materials such as expanded clay [9] to
cement based composites such as light weight concrete [10], compressible cementitious mortar with
expanded polystyrene [11] or expanded pearls, and foam [12] have been proposed. In general, the basic
morphology of a cementitious compressible grout consists of pores and soft inclusions embedded
in a cementitious matrix. A laboratory specimen, made of a compressible cementitious composite,
that is subject to compressive loads, undergoes three characteristic stages of deformation: (i) an elastic
stage with reversible deformations, (ii) a plateau stage where the material undergoes large irreversible
deformations, and (iii) a densification stage in which the material has exhausted the compaction
capacity and stiffens with increasing loads. At the scale of the microstructure, the material undergoes
several complex processes such as reversible topology preserving deformations, gradual collapse of
pore/soft-inclusion and compaction of the binder particles.

Designing a compressible grout material with the desired compaction behavior, for a certain
specific geological condition, can be challenging as multiple complex phenomena govern the
compaction behavior of the material. In order to support the design of novel compressible lining
materials and also gain a deeper understanding of the underlying mechanisms, computational
simulations can be applied. As these materials are characterized by a highly heterogeneous
microstructure with pores and/or soft inclusions [13,14], the type of computational model depends on
the desired scale at which the corresponding physical mechanisms are specified: macro-, micro-, or
mesoscale. In contrast to macrosopic phenomenological models [15–18] where the microstructure is
treated as a homogeneous medium, continuum micromechanics models take into account the influence
of the microstructure using the matrix-inclusion concept [19] in conjunction with inelastic material
laws defined at the microscale (elastoplasic [20–22] or hyperelastic [23–25]) and the utilization of
nonlinear homogenization schemes [26,27]. However, as the microstructure is not explicitly resolved
but idealized in terms of a representative effective medium, deformation gradients at the scale of
microstructure and formation of localization bands cannot be simulated. In contrast, mesoscale
models explicitly resolve the microstructure and the interactions between the heterogeneities such
as the contact of pore/microcrack faces during compaction. Mesoscale models can be developed
using a variety of methods such as the Finite Element Method (FEM) [28,29], the Discrete Element
Method (DEM) [30,31], and lattice methods [32,33]. The Discrete Element Method is based on
an idealization of the mesostructure using discrete particles, which interact through inter-particle
forces and contact mechanisms. This discretization method allows for an explicit representation
of the material microstructure with soft [34–36] and hard inclusions [37–40]. Thus, through an
explicit representation of the pore structure and by consideration of the pore collapse mechanism,
DEM is capable of simulating the essential physics of compressible lining materials. Unfortunately,
the calibration of the parameters governing the inter-particle interactions in DEM is generally not easily
accomplished directly from laboratory tests, but usually requires inverse identification procedures, see,
e.g., in [40,41].

Goals and Structure of the Paper

In this paper, the behavior of several designs of highly compressible cementitious material
composites used to fill the annular gap grouts in mechanized tunneling is investigated using
experimental methods. The material behavior of these materials is thereafter analyzed numerically
using the Discrete Element Method. Emphasize is laid on the calibration procedure of the inter-particle
parameters, which are identified using the data from the experimental procedure. The DEM model is
not only intended as a tool for the prognosis of the material behavior, but also to obtain insights into
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the physical phenomena characterizing the interplay between the changes in the microstructure and
the macroscopic deformation behavior.

The remainder of this paper is structured as follows. In Section 2, the theoretical background of
DEM and the DEM constitutive contact model for cement paste are reviewed. Section 3 summarizes
the experimental data, and discussed the calibration and the validation process. Finally, a discussion
of the main findings and concluding remarks are provided in Section 4.

2. Modeling Cementitious Materials with DEM

In Discrete Element Method (DEM) models, the material is described as an assembly of particles
that can collide, interact, and exert forces on each other. The dynamics of these particles is governed by
Newton’s second law. Within this modeling framework, concrete and rock materials are characterized
by a packing of particles linked together by cohesive frictional forces. Within the medium, the induced
forces are transmitted via a contact network between particles [30].

The contact network is first established and updated by identifying the particles and their nearest
neighbor interactions. Thus, particles are considered to interact with each other, if the following
condition is fulfilled,

lij ≤ RI(ri + rj), (1)

where ri and rj are the radii of particles i and j, and lij denotes the distance between their centers. RI is
the interaction factor set equal to 1 for granular materials. However, for cohesive frictional materials
such as concrete, RI is often set to a higher value, e.g., to 1.5 to increase the number of average
cohesive contacts per particle, which represents the cohesive properties of the concrete matrix [36,42].
Most DEM formulations are based on the soft-sphere approach, where contact is characterized by
an interaction between overlapping particles. However, in the hard-sphere approach [43], contact
occurs without allowing an overlap between rigid particles and is instantaneous. An instantaneous
point-contact event between rigid spheres in the hard-sphere approach is rather simplistic and this
method cannot account for multiple simultaneous contacts between a large number of particles as
well as inelastic interactions between particles. A detailed explanation of these two approaches can be
found in [44]. In this work, the soft-sphere approach is used.

The interaction forces are evaluated based on the relative displacements in the current particle
configuration. Next, the resultant interaction forces are used together with the applied external forces
as input for the equations of motion in the time integration step to solve for the new position of
all particles.

2.1. Governing Equations of Motion

For every particle i, the resultant force Fi is the sum of an external force Fext
i , a damping force

Fdamp and a contact force Fij, where j defines particles which are in contact with particle i:

Fi = Fext
i +

N
∑

j=1
Fij + Fdamp, (2)

where N is the number of particles having an interaction with particle i.
Numerical damping Fdamp [36,42] is applied to all particles. The damping term dissipates the

overall kinetic energy and ensures quasi-static equilibrium conditions. Given the resultant force Fi on
particle i having mass m, the velocity vi is evaluated using Newton’s second law as

vn+ 1
2

i = vn− 1
2

i +
Fn

i
mi

∆t, (3)

where ∆t is the time increment.
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Similarly, the effective moment Mi and the angular velocity ωi are updated at each time step:

Mi = Mext
i +

nj

∑
j=1

Mij

Ii
+ Mdamp, (4)

ω
n+ 1

2
i = ω

n− 1
2

i + ω̇n∆t, (5)

where Ii is the moment of inertia of particle i.
The displacement un+1

i and orientation θn+1
i are updated according to

un+1
i = un + vn+ 1

2
i ∆t, (6)

θn+1
i = θn

i + ω
n+ 1

2
i ∆t. (7)

As a result, the position of all particles is updated accordingly. In the next time step, the newly
updated configuration is used to resolve the interaction between particles in terms of contact stresses
and strains.

2.2. Constitutive Law

Given the updated position of all particles, the interaction forces in the contact network are
computed. The normal and tangential strains εn, ετ are computed based on the relative normal and
tangential displacements un, uτ between two particles and their initial distance lij

0 :

εn =
un

lij
0

, ετ =
uτ

lij
0

. (8)

The normal relative displacement vector is calculated as

un = (‖xi − xj‖ − lij
0 )n, (9)

where xi, xj denote the current positions of the particle centroids and n is the normal vector connecting
the centroids of two particles. The relative tangential displacement is computed by subtracting the
normal component from the total relative displacement uij

uij
τ = uij − (uij · n)n, (10)

where
uij = (∆ui − ∆uj) + (ωi × rci −ωj × rcj)∆t. (11)

∆ui and ∆uj are the displacement increments of particles i and j, and rci and rcj denote the vectors
connecting the point of the contact and centroid of particles.

The elastic behavior between two particles is characterized by the normal Kn and tangential Kτ

stiffness moduli. The normal stress and shear stress are computed directly from the updated position as

σn = Knεn, στ = Kτετ . (12)

In this work, the concrete contact modeling approach according to the work in [45] was adopted,
where the interaction of the particles tension in normal direction is governed by a damage softening
law

σn = [1−ωH(εe
n)]Knεe

n. (13)
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where ω is a damage parameter (ω ∈ [0, 1]) and H(εn) is the Heaviside function, used to deactivate
damage in compression. The linear softening law is characterized by the predefined limit elastic strain
ε0 and the ultimate strain ε f , as shown in Figure 1.

σn

εn

Kn

ε0 ε f

Ks n

εs

.K

Figure 1. Contact behavior between two particles subjected to tension in normal direction.

The normal compression mode is characterized by an elasto-plastic behavior with plastic strain εs

and the relative hardening stiffness Ks (Figure 1)

εn =

{
εn +

σn
Kn

, if σn < σs,

εs +
σn−Knεs

KsKn
, otherwise.

(14)

Shear stress can be calculated from the modified Mohr–Coulomb frictional law f (σn, στ),
taking into account the damage parameter ω (see Figure 2):

f (σn, στ) = ||στ || − [c0(1−ω)− σn tan ϕ], (15)

where c0 is the initial cohesion and ϕ is the frictional angle. Shear stress and strain are updated as
follows. First, the trial shear stress is computed

σtrial
τ = Kτετ , (16)

then the shear stress is corrected according to

στ =
(

c0(1−ω)− σn tan ϕ
) σtrial

τ

|σtrial
τ |

. (17)

Finally, the shear strain is recomputed as

ετ =
στ

|σtrial
τ |

ετ

|ετ |
. (18)

Given the contact stresses, the contact forces are obtained as

Fij
n = σ

ij
n Aijn, (19)

Fij
τ = στ

ij Aij, (20)

where Aij is the contact interface area [36] which is defined as Aij = πmin(ri, rj)2.
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n

1

2
φ

-   n(tan   )φ

Figure 2. Illustration of the Mohr–Coulomb yield surface. As the damage parameter ω increases,
the yield surface is shifted along the normal stress axis in negative direction.

All parameters of the described constitutive model summarized in Table 1 are to be calibrated
according to the properties of the specific material to be analyzed. The calibration procedure for
cementitious compressible composites is given in the following Section.

Table 1. Summary of the model parameters required in calibration of the Discrete Element Method
(DEM) model.

Elastic parameters
Kn normal modulus Pa
Kτ tangential modulus Pa

Damage law in tension
ε0 limit elastic strain
ε f
ε0

relative ductility

Elasto-plasticity in shear
c0 initial cohesion Pa
tan ϕ frictional angle

Elasto-plasticity in compression
εs plastic strain
Ks relative hardening modulus

3. Calibration and Validation of the DEM Model Based on Laboratory Experiments

3.1. Experimental Data from Compression Tests on Highly Compressible Composite Grouts

As possible candidates for annular gap grout, three different activated two component-grout
mixes with a defined fraction of expanded polystyrene (EPS) beads (denoted as A, B, and C) have
been prepared within the experimental program. The type of binder is the same for all mixes. Mix A
consists of only cement binder matrix (porosity < 1%); mix B consists of cement paste and EPS beads
with a volume fraction of 61.5%; and mix C consists of cement paste, EPS, and additional air voids,
contributing up to 71.1% of volume fraction in total (see Figure 3 and Table 2). Two cylindrical samples
with diameter of 100 mm and height of 200 mm (see Figure 4 left) of each mix have been casted and
cured for 7 days.

The samples were subjected to both unconfined uniaxial and confined uniaxial compression tests
with a constant loading rate of 20 mm/min (or strain rate ε̇ = 0.1 s−1). First, a uniaxial compression test
(see Figure 4 left) was performed on sample A to obtain the mechanical properties of the cement paste.
Then, uniaxial compression and confined compression (see Figure 4 right) tests were conducted on
samples B and C to investigate the effect of EPS and air voids on the mechanical behavior of the grout.
To simulate confinement, the sample was placed in a steel container (diameter = 180 mm) filled with
fine sand (see Figure 4 right) in the confined tests. All tests were performed using displacement control.
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B - cement paste + EPS C - cement paste + air voids + EPS

Sample A Sample B Sample C

cement paste
air voids

EPS beads

2 mm

Figure 3. (Top): Schematic illustration of three different grout mixes prepared within the experimental
program. (Bottom): Direct light microscope images of hardened grout samples B and C.

Table 2. Mixture design for grout samples A, B, and C.

Mix Designs A B C

Source Materials Volume
[l]

Volume
[l]

Volume
[l]

Cement 67.6 25.9 19.4
Slag 142.0 54.5 40.8
Filler 0.0 0.0 0.0
Bentonite 21.4 8.2 6.2
Water 695.9 267.1 200.0
Foaming agent 0.0 0.0 0.89
EPS 0.5–1 mm 0.0 297.9 223.1
EPS 1–2 mm 0.0 123.3 92.3
EPS 2–5 mm 0.0 195.2 146.2
Activator 1 (Sodium) 37.6 14.4 10.8
Activator 2 (Potassium) 35.5 13.6 10.2
Calculated Air voids 0.0 0.0 250.0

Total 1000 1000 1000

Table 3 presents elasticity modulus, compressive strength and density of samples A, B, and C as
the outcome of the uniaxial compression tests (Figure 5 left). Young’s moduli of samples A, B, and
C are estimated using the stress and strain intervals indicated by black lines in Figure 5 left. Grout
samples B and C, owing to the high void content, exhibited a decrease in strength and stiffness as
compared to sample A. In contrast to sample A, which failed due to tensile splitting, in samples B and
C damage initiated at the upper part where the load was applied, followed by local crushing.
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 Uniaxial compression Confined compression

20
 c

m

10 cm⌀

sand

Figure 4. (Left): Sample geometry and experimental set-up for the uniaxial compression test.
(Right): Experimental setup for the confined compression test.

In the confined compression test, the behavior of samples B and C differs from sample A.
Three distinct stages of deformation were observed in samples B and C under confined compression:
An elastic region, a plateau and a densification stage (Figure 5 middle). After the elastic stage, in the
plateau stage, the material undergoes plastic deformation characterized by large plastic deformations
with marginal increase in stresses, associated with the collapse of voids. When the pores have
completely collapsed, subsequent to the plateau stage, densification due to pore compaction results
in a significant increase in the tangent stiffness of the material. The confinement condition has
prevented the samples from failure resulting from lateral expansion. In the confined compression tests,
irreversible compaction of the composites up to 75% was attained (Figure 5 right)).

strain sample C
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Figure 5. (Left): Experimentally measured response of the samples A, B, and C under uniaxial
compression. (Middle): Experimentally measured response of composites B and C under confined
compression. (Right): Sample C at the final state of compaction.

Table 3. Material properties of grout samples A, B, and C. Young’s modulus and compressive strength
are obtained from the uniaxial compression tests (Figure 5 left).

Sample Young’s Modulus
(GPa)

Compressive Strength
(MPa)

Density
(kg/m3)

A 1.262 7.38 1430
B 0.248 0.64 840
C 0.12 0.18 460

3.2. Calibration of Model Parameters

Using the data obtained from the experiments, we proceed to calibrate the model parameters
as follows. (a) Data obtained from uniaxial compression of sample A is used to calibrate the contact
parameters for the cement paste matrix; (b) data obtained from uniaxial compression tests on samples
B and C is used to calibrate the porosity of DEM numerical models for the samples B and C; (c) the
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stress–strain curve of B under confined compression is further used for calibrating additional DEM
parameters associated with the compression behavior of the material; (d) finally, the data from the
confined compression experiments using sample C is exclusively used for the validation of the model.

The calibration of parameters for the described model is performed following three steps according
to the procedure illustrated in Figure 6.

Sample A 

Elastic properties:
Kn, Kτ

Damage behavior:
ε0, εf

Shear behavior:
c0, tanφ

Samples B, C 

Sample B

Plasticity behavior
 in compression:

Ks, εs

Sample C 

Step 1 Step 2

Step 3 Validation

Embedding 
voids into 

DEM samples

Figure 6. Calibration procedure. Step 1: Calibration of contact parameters using the uniaxial response
of sample A. Step 2: Generating composite samples by embedding spherical voids representing the air
voids and the expanded polystyrene (EPS) inclusions into the numerical DEM model for sample A. The
voids are embedded into the DEM specimen by removing the DEM particles lying within the spherical
region defined by the void location. Step 3: Calibration of plasticity parameters of the DEM model to
match the compaction behavior of sample B under confined compression. Validation: The stress–strain
response obtained by the DEM simulation of sample C under confined conditions is compared with
laboratory results for sample C.

3.2.1. Calibration Step 1

First, a computational model of a cylindrical sample of height 200 mm and diameter 100 mm has
been generated for the DEM simulation as shown in Figure 8 left. In DEM, a sample is an assembly
of spherical particles occupying a given geometry and is often referred to as packing. Here, a dense
packing with a random arrangement was chosen. DEM particles of the same size (radius = 0.8 mm)
were used. This packing is assumed to represent the cement paste matrix without EPS or air voids
(sample A), which results in a total of 452,257 particles. However, these DEM particles do not represent
the actual morphology of the cement paste, rather being a means of material discretization at the
mesoscale. In order to resolve the actual geometrical morphology of the cement paste, including
the complete pore space ranging from a few nanometers up to a few micrometers, would require a
tremendous amount of computational power. For cementitious materials, the interaction factor RI is
chosen to be 1.5 [42,46].

Next, the uniaxial compression simulation was performed with this numerical sample analogous
to the experimental test. In the model, particles at the bottom cylinder face were fixed in all directions
while at the top face a vertical constant strain rate was applied. In order to simulate quasi-static
conditions, numerical damping with a damping factor of 0.3 was adopted [45,47] to dissipate the total
kinetic energy of the system. Moreover, mass scaling of (4800 kg/m−3) was adopted to increase the



Materials 2020, 13, 4989 10 of 17

critical time step [45,47], which is a standard value for modeling concrete using the DEM. This allows
to apply strain rates that are is not too small to enable reasonable computational costs of the analyses.
Furthermore, a constant loading velocity of 5× 10−2 m/s was set in all simulations to exclude the
effect of inertia. During the simulations, the resultant forces and displacements at the top cylinder face
were recorded and used to compute the stress and the deformation.

As a result, by matching the experimentally measured elastic properties and the compresssive
strength of sample A (see Figure 7 left) the normal and tangential elasticity moduli (Kn, Kτ),
the parameters of the damage law (ε0, ε f ) and the Mohr–Coulomb yield surface parameters (c0, tanϕ)
are calibrated (Table 4). It is noted that the early portion of the load displacement curve obtained
from the experiments in Figure 7 left shows a nonlinear behavior, which is attributed to the loading
discrepancy between the specimen and loading plate in the initial stage of loading, a phenomenon
commonly observed in laboratory testing [48]. This initial disturbance has been filtered out and does
not affect the calibration procedure.

Table 4. Calibrated parameters of the DEM model for the cementitious matrix.

Elastic parameters
Kn 0.8 GPa
Kτ 0.2

Damage law in tension
ε0 5.5× 10−4
ε f
ε0

30

Elasto-plasticity in shear
c0 0.25 MPa
tan ϕ 0.577

Elasto-plasticity in compression
εs −1.2× 10−3

Ks 0.001

To visualize the damage pattern, we define the parameter ω̂i, which is a damage parameter
averaged over all cohesive contacts (i.e., contacts that are created at the initiation step) associated with
particle i. Accordingly, ω̂i of particle i is defined as

ω̂i =
∑

nj
j=1 ωij

nj
, (21)

where ωij is the damage parameter of the normal interaction between particle i and particle j, and nj is
the number of initial cohesive bonds of particle i. Particles with ω̂i = 0 are in an undamaged state,
while ω̂i = 1 indicates a fully damaged state.

Figure 7 illustrates the damage pattern in sample A in the experiment (middle) and in two stages of
uniaxial compression in the numerical simulation (right). The figures show a cross section through the
cylindrical sample. In the simulation, damage first occurs by the formation of a macrocrack near the outer
surface, almost parallel to the loading axis, followed by a secondary, inclined macrocrack. The photo
from the damaged specimen after the end of the test also shows dominant vertical cracks at both edges of
the specimen, partially with a slight inclination as was observed in the results from the DEM simulations.
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Figure 7. (Left): Uniaxial compression of sample A: Load–displacement curves obtained from the
experiment (black line) and the DEM simulation (green line). (Middle): Photo of the damaged sample
A after the uniaxial compression test in the laboratory. (Right): Damage pattern obtained from the
DEM simulation at two stages of compressive loading: at 6.714 kN/cm2 (post peak), and 5.461 kN/cm2

(post peak) in the cross section of the cylindrical sample A.

3.2.2. Calibration Step 2

Ideally, the microstructure of the material used in the experiment should serve as the direct input
to generate the numerical sample for DEM simulation, e.g., by incorporating data from CT imaging
techniques in DEM models with a realistic microstructure (i.e., cement paste, aggregates, ITZ, etc.) [38].
However, in this paper, the composite microstructure of the investigated grout mixes is characterized
by inclusions (pores, air voids, and EPS beads) at multiple scales. Thus, it would require a tremendous
amount of very small DEM particles to resolve the topology of the small inclusions. This would be
computationally too expensive. Therefore, the numerical models for the samples B and C have been
created without CT scans by “embedding” spherical voids into the numerical DEM model for sample
A generated and calibrated in Step 1. The voids are embedded into the DEM specimen by removing
the DEM particles lying within the spherical region defined by the void location. These spherical
voids represent both air voids and EPS beads, as the stiffness of EPS is comparatively low. Thus,
from modeling perspective we do not distinguish between air voids and EPS beads.

Using the DEM model with embedded voids, a uniaxial compression test was simulated (same as
in Step 1), and the compressive strength in uniaxial test was recorded. Voids were embedded in an
iterative manner until the compressive strength of the sample obtained in simulation matches the
experimentally measured compressive strength of the corresponding mixes B and C. It must be noted
that, DEM particles do not represent the actual cement paste grains, and that at this level of observation,
they are rather a means to discretize the material at the mesoscale. Consequently, certain parameters
controlling, e.g., plasticity in shear and in normal compression, have to be employed to capture the
correct physics of interactions at the lower scale.

The process of embedding the voids into the DEM sample is as follows.

• Voids with a prescribed volume fraction and size distribution are randomly picked and placed
within a cylindrical domain (height = 200 mm, diameter = 100 mm).

• The coordinate and radius of each void particle is recorded.
• Given a dense packing of DEM particles generated in Step 1, the DEM particles lying within the

spherical region defined by void position and radius are removed.

The void size distribution was assumed to follow the normal probability density function with
a mean radius of 2.5 mm and standard deviation of 0.25 (see Figure 8 right). The numerical packing
based on this void size distribution can be qualitatively compared with the void distribution along the
cut surface of the grout sample prepared in the experimental program (see Figure 8 right).
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Numerical DEM specimen:
dense packing

Slice of numerical 
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Figure 8. (Left): Numerical model of an initial sample A with a dense packing constituting the basis for
the generation of DEM models B and C with air voids. (Right): Generation of numerical DEM model
for samples with distributed voids and comparison with a photo from the cut surface of sample C.

The geometrical data representing the air voids embedded in the numerical models for samples B
and C are summarized in Table 5.

Table 5. DEM models for samples B and C: Number and size of DEM particles and representation of
the air pores.

Sample Radius of DEM
Particles (mm)

Number of
DEM Particles

Void Volume
Fraction

Mean Void
Radius (mm)

Number of
Voids

B 0.8 253,718 42% 2.5 11,567
C 0.8 199,357 53.2% 2.5 14,651

Figure 9 right shows the distribution of fracture, represented by the damage parameter ω̂,
according to the DEM simulations of the samples corresponding to mixes B and C at at strain level
0.008. ω̂ is the damage parameter averaged over all contacts of a corresponding particle. At the top,
the damage distribution at the outer surface is illustrated, and at the bottom, the damage distribution
along the cross section of the specimen is illustrated.
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Figure 9. (Left): Uniaxial compression of samples B and C: comparison of experimental measurements
and numerical results. (Right): Distribution of the damage parameter ω̂ obtained from the DEM
simulation at strain level 0.008 for sample B (void volume fraction = 42%) and sample C (53.2%).
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In comparison to the experimental data, uniaxial compression simulations on the generated
samples with voids yielded higher stiffness for the same strength level (see Figure 9 left). This is due
to the relatively coarse discretization which does not capture small voids present in the real material.
Initially, prior to reaching the peak stress, microcracking is predicted to initiate diffusively at different
locations in the specimen, mostly localized in the vicinity of voids. As the load is increased, damage
starts to localize at the upper part of the specimen, followed by local crushing/compaction (see Figure 9
right, which shows the state of damage at the axial strain level ε = 0.008 in the post-peak state).

3.2.3. Calibration Step 3

In the previous two calibration steps, the numerical DEM models for samples representing
mixes B and C have been generated and calibrated based on the uniaxial compression experiments
performed with mixes B and C. In Step 3, the simulation of confined compression on numerical sample
B is performed and compared to experimental data in order to calibrate the plasticity parameters Ks,
εs (Table 4). Figure 10 left shows the comparison of the stress-strain response for mix B obtained from
the calibrated DEM model (red lines) and in the laboratory test (green dotted lines).
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Figure 10. (Left): Calibration step 3 and model validation: Results from DEM simulations of confined
compression tests on samples B and C and comparisons with test results. The experimentally observed
behavior of mix B (green dotted line) was used for the calibration of the model plasticity parameters
(red lines). The numerical results for sample C (blue lines) are predictions and must be validated against
the experimental results (yellow dotted lines). (Right): Distribution of damage in the cross section and
interior of specimen predicted by the DEM model for sample C under confined compression in two
stages of compressive loading.

3.3. Validation

In the calibration procedure, the normal and tangential elasticity moduli (Kn, Kτ), the softening
curve parameters (ε0, ε f ) and parameters defining the Mohr–Coulomb yield surface (c0, tanϕ) have
been calibrated in Step 1 based on the uniaxial compression experiments with mix A. In Step 2,
the microstructure topology of the composites corresponding to mixes B and C has been characterized
by matching the compressive strength obtained numerically to the measured data using uniaxial
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compression tests on samples B and C. In Step 3, the plasticity parameters Ks, εs have been calibrated
based on the experimentally observed material response of sample B in the confined compression test.

After calibrating the required parameters, the model is now used to predict the complete
behavior of sample C under confined compression until a strain level of 0.6. The uniaxial unconfined
compression test was used to calibrate the volume fraction of embedded voids for sample C.
The experimental results from sample C under confined compression were not used to calibrate
any model parameter. This ensures the predictive capability of the model. Figure 10 left presents the
predicted (blue lines) and experimentally observed stress–strain response (yellow lines) for the sample
C under confined compression conditions.

In the DEM simulation, initially diffuse cracking occurs arbitrarily within the whole specimen.
This plateau stage is characterized by material compaction and a slight stress increase. According to
the computational model, damage initiates at the top part of the sample and forms a compression
band which propagates downwards during the pore compaction process. This leads to a material
compaction gradient which can be clearly seen in Figure 10 right top.

During the pore compaction process, most pores collapse “layer by layer”. Particles with all
contacts “broken” dynamically interact with each other by means of newly created interactions
(i.e., interaction between two particles as they “collide” with each other) and rearrange themselves
to fill the voids (Figure 10 right bottom). This mechanism is reflected by a high material compaction
without significant change in stress leading to the plateau behavior of the stress–strain curve also
observed in the experiments. As soon as all voids have experienced collapse, a densification process
initiates, which is characterized by the regain in stiffness. Moreover, this is in agreement with the
observations in the laboratory.

In this work, all simulations were performed using an open-source DEM software ‘WooDEM’ [49].
The software is written in C++11 and supports OpenMP parallelization. The computational time
required for the simulation of the confined compression test on sample B (Figure 10 left) is 207 h for
2.4× 106 time steps. Each simulation is performed on 12 Intel R© Xeon R© Gold 6148 CPUs running in
parallel @ 2.40 GHz with 100 GB RAM.

4. Conclusions

In this paper, we have generated a computational model employing the Discrete Element Model
to simulate the behavior of specimens made of highly compressible cementitious materials. To enable
a systematic calibration procedure, two different concrete mixes as well as a specimen made of cement
paste only have been tested experimentally. One of the mixes contained EPS beads of different
sizes, and the second mix also contained, in addition, artificial air voids. Cylindrical samples based
on selected material designs have been subjected to compressive loads with and without lateral
confinement. The calibration procedure used information from the test on cement paste specimens
as well as the compressive strength data from the highly compressible specimens with only EPS
beads subjected to uniaxial compression. The DEM model was eventually validated based on test
results from a highly compressible specimen with a material mix also containing air voids subjected to
confined compression. Using this calibration procedure, the main physical mechanisms associated
with compaction processes occurring in the specimens could be well captured by means of the DEM
model. The model has shown a cascade-type mechanism of pore collapse, which propagates from
the top to the bottom. This mechanism was also observed in the experiments. After the compaction
process was completed, the model showed, again in agreement with the experiments, a re-stiffening of
the material. From the computational and experimental analysis, the following conclusions are drawn.

• Cementitious materials with high-compaction potential can be designed using a combination of
weak inclusions and pores.

• Experimental observations and model simulations show the development of compaction
gradients during confined uniaxial compression tests.
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• Despite the extensive work dedicated to the calibration procedure as well as the high
computational cost, DEM has shown its capability to replicate the main physical mechanisms
governing the behavior of compressible cementitious composites.

• In order to capture the effect of fine pores with a characteristic size smaller than the DEM
discretization, a phenomenological plasticity-type submodel has to be calibrated in addition to
the usual inter-particle parameters.

• The proposed calibration procedure offers a good control of the pore structure characteristics, such
as void volume fraction, air-void size, and void size distribution. Consequently, the proposed
computational model allows to support the design of new materials with specific, customized
compaction properties (elastic phase, plateau, and densification). These materials can be used for
optimizing the compressibility characteristics of annular gap grouts used to fill the tail void gap
in mechanized tunneling in case of tunneling projects in rocks with a high squeezing potential.

As an outlook, other materials for inclusions enabling a controlled compaction behavior of
cementitious materials will be considered, which are characterized by a crushing mechanism when
subjected to large compressive stresses. One candidate for such a damage tolerant composite material is
based on using expanded glass beads as inclusion. This concept is currently explored in laboratory tests.
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