Master of Science "Computational Engineering", Autumn 2009

Course

ADVANCED FINITE ELEMENT METHODS

Written Examination on 04.09.2009

Last Name: \qquad First name: \qquad Matr.-No.: \qquad
(please write legibly)

exercise	1	2	3	4	5	6	\sum
max. points	20	10	24	36	10	20	120
obtained points							

Important instructions

- Duration: 2 hours,
first 30 minutes without appliance, then 90 minutes with appliance.
- Check the completeness of the exercises.
- Write your name onto all pages of the test.
- Write the solutions of exercise 1 and 2 onto the colored handout. Don't use your own paper.
- For Exercise 1 and 2 only dictionaries are allowed.
- Hand in all pages of the exercise.
- Dont't use green coloured pens.
- The solutions should include all auxiliary calculations.
- Programmable pocket calculators are only allowed without programs.
- The use of laptops, notebooks, PDA and mobile phones is not allowed. The use of pocket calculators during the part without appliance is also not allowed.
- Visit of the toilet only individually.
- Don't leave the lecture room between part I and part II of the examination and stay in the room until the preparation time is over.
- Please deactivate your mobile phone.

I. Geometrical non-linearity:

Exercise 1.1
 (max. points: 6)

a) With the definition of the material deformation gradient:

$$
\begin{equation*}
\mathbf{F}=\frac{\partial x}{\partial X}, \tag{1}
\end{equation*}
$$

prove that:

$$
\begin{equation*}
\delta \mathbf{F}=\Delta \delta \mathbf{u} \tag{2}
\end{equation*}
$$

b) Using the result from part a) and the symmetry of the stress tensor \mathbf{S}, show that the internal virtual work can be transformed as follows:

$$
\begin{equation*}
\int_{\Omega} \Delta \delta \mathbf{u}:(\mathbf{F} \cdot \mathbf{S}) \mathrm{d} V=\int_{\Omega} \delta \mathbf{E}: \mathbf{S} \mathrm{d} V \tag{3}
\end{equation*}
$$

where the Green Lagrange strain tensor \mathbf{E} is defined as a function of the material deformation gradient:

$$
\begin{equation*}
\mathbf{E}=\frac{1}{2}\left(\mathbf{F}^{T} \cdot \mathbf{F}-\mathbf{1}\right) . \tag{4}
\end{equation*}
$$

As a hint, you can start your proof from the right-hand-side of equation (3) on.

Exercise 1.2

(max. points: 5)

Perform the GÂtEAUX derivative of

$$
\begin{equation*}
f\left(u_{1}, u_{2}\right)=\sin \left(2 u_{1}\right)+u_{1} u_{2}^{2} \tag{5}
\end{equation*}
$$

with respect to u_{1} and u_{2}.

Exercise 1.3

(max. points: 4)

Distinguish the main characteristics of the pure NEWTON-RAPHSON method and the modified NEWTONRAPHSON method by finishing their local iterations in the following diagrams. Compare their convergence properties.
a) Pure Newton-Raphson method:

b) Modified Newton-Raphson method:

Exercise 1.4

(max. points: 5)

Draw a load-displacement diagram for a one-dimensional system involving limit points with both "snap-through" and "snap-back" characteristics. Indicate which control method can be used for the solution based on NewTON-type iteration scheme and which methods can't be used. Explain your choices.

II. Material non-linearity:

Exercise 2.1

(max. points: 3)
Sketch the stress-strain relations for a one-dimensional loading-unloading and reloading cycle with
a) non-linear elastic material behaviour;
b) elasto-plastic material behaviour;
c) elasto-damaging material behaviour.

Exercise 2.2

(max. points: 3)

Specify the yield functions for a one-dimensional
a) isotropic hardening;
b) kinematic hardening.

Exercise 2.3

(max. points: 4)

A compelling interpretation of the return-mapping algorithm for 1-D isotropic hardening is derived by writing the final stress in a slightly different form:

$$
\begin{equation*}
\sigma_{n+1}=\sigma_{n+1}^{\text {trial }}-\Delta \gamma E \operatorname{sign}\left(\sigma_{n+1}^{\text {trial }}\right)=\left[1-\frac{\Delta \gamma E}{\left|\sigma_{n+1}^{\text {trial }}\right|}\right] \sigma_{n+1}^{\text {trial }} \tag{6}
\end{equation*}
$$

where the algorithmic consistency parameter $\Delta \gamma>0$ and the elastic modulus $E>0$. Explain graphically that the final stress state is obtained by "returning" the trial stress to the yield surface through a scaling.
(Hint: $\left.\varepsilon_{n+1}^{p}=\varepsilon_{n}^{p}+\Delta \gamma \operatorname{sign}\left(\sigma_{n+1}^{\text {trial }}\right)\right)$

Master of Science "Computational Engineering", Autumn 2009

Course

ADVANCED FINITE ELEMENT METHODS

Written Examination on 04.09.2009

Last Name: \qquad First name: \qquad Matr.-No.: \qquad
(please write legibly)

exercise	\pm	Z	3	4	5	6	\sum
max. points	20	10	24	36	10	20	120
obtained points							

Important instructions

- Duration: 2 hours,
first 30 minutes without appliance, then 90 minutes with appliance.
- Check the completeness of the exercises.
- Write your name onto all pages of the test.
- Write the solutions of exercise 1 and 2 onto the colored handout. Don't use your own paper.
- For Exercise 1 and 2 only dictionaries are allowed.
- Hand in all pages of the exercise.
- Dont't use green coloured pens.
- The solutions should include all auxiliary calculations.
- Programmable pocket calculators are only allowed without programs.
- The use of laptops, notebooks, PDA and mobile phones is not allowed. The use of pocket calculators during the part without appliance is also not allowed.
- Visit of the toilet only individually.
- Don't leave the lecture room between part I and part II of the examination and stay in the room until the preparation time is over.
- Please deactivate your mobile phone.

I. Geometrical non-linearity:

Exercise 3
 max. \sum points: $\mathbf{2 4}$

obtained \sum points: \qquad

The geometrically non-linear analysis of a slab has resulted in the deformed shape in the figure below. The computation has been carried out by means of a four node finite element with bilinear displacement interpolations.

a) Find the expression of the displacement field $\mathbf{u}(\mathbf{X})$ with respect to physical coordinates. (8 point)
b) Determine the gradient of the displacement field $\nabla \mathbf{u}$ and the deformation gradient \mathbf{F}. (4 point)
c) Compute the distribution of the density ρ of the deformed configuration with respect to the density ρ_{0} of the reference configuration. Specify the current density at point P. (6 point)
d) Compute the components E_{11}, E_{22}, E_{12} and E_{21} of the Green-LAGrange strain tensor at point P. (6 point)

Exercise 4

 max. \sum points: 36 obtained \sum points: \qquad

$$
\begin{array}{|lll|}
\hline E A & =250 & k N \\
B & =4 & m \\
C & =3 & m \\
\hline
\end{array}
$$

a) Specify the vector of internal forces \mathbf{r}_{i} for $\alpha=2$ by one of the following methods ($\mathbf{1 5}$ point):
i) direct generation of static equilibriums in the deformed state.
ii) application of the principle of virtual work.
b) Specify the tangent stiffness matrix for this system for $\alpha=2$. ($\mathbf{5}$ point)
c) The resultant internal force vector and the tangent stiffness matrix of the above system for $\alpha=1$ are given as below:

$$
\begin{align*}
& \mathbf{r}_{i}(\mathbf{u})=\left[\begin{array}{cc}
50 u_{1}+3 u_{1}^{2}+2 u_{1}^{3}-14 u_{1} u_{2}+u_{2}^{2}+2 u_{2}^{2} u_{1} \\
2 u_{1} u_{2}-7 u_{1}^{2}+2 u_{1}^{2} u_{2}+50 u_{2}-21 u_{2}^{2}+2 u_{2}^{3}
\end{array}\right], \\
& \mathbf{K}_{t}(\mathbf{u})=\left[\begin{array}{cc}
50+6 u_{1}+6 u_{1}^{2}-14 u_{2}+2 u_{2}^{2} & -14 u_{1}+2 u_{2}+4 u_{1} u_{2} \\
-14 u_{1}+2 u_{2}+4 u_{1} u_{2} & 50+2 u_{1}+2 u_{1}^{2}-42 u_{2}+6 u_{2}^{2}
\end{array}\right] . \tag{7}
\end{align*}
$$

Solve the non-linear structural equilibrium

$$
\mathbf{r}_{i}(\mathbf{u})=\lambda \mathbf{r}_{0}, \quad \mathbf{r}_{0}=\left[\begin{array}{c}
0 \tag{8}\\
10
\end{array}\right]
$$

by means of a load-controlled Newton-Raphson method in one single load step for $\lambda=2$. Use $\mathbf{u}^{0}=\mathbf{0}$ as a starting value at the beginning of the iteration! Solve for 2 iterations and check the convergence! ($\mathbf{1 6}$ point)

II. Material non-linearity:

Exercise 5 max. \sum points: 10

obtained \sum points: \qquad

1D combined kinematic/isotropic hardening

In many metals subjected to cyclic loading, it is experimentally observed that the center of the yield surface experiences a motion in the direction of the plastic flow. This hardening behavior can be represented by a simple phenomenological mechanism, referred to as kinematic hardening, used alone or in conjunction with isotropic hardening. The yield condition of such combined kinematic and isotropic hardening for one-dimensional case has the following form

$$
\begin{equation*}
f(\sigma, \eta, \alpha):=|\sigma-\eta|-\left[\sigma_{Y}+H \alpha\right] \leq 0, \tag{9}
\end{equation*}
$$

where η is back stress that defines the location of the center of the yield surface and H is often called the plastic modulus.
In order to formulate the return-mapping algorithm, the discrete algorithmic equations are obtained by applying an implicit backward Euler difference scheme:

$$
\begin{align*}
\sigma_{n+1} & =\sigma_{n+1}^{\text {trial }}-\Delta \gamma E \operatorname{sign}\left(\xi_{n+1}\right), \\
\varepsilon_{n+1}^{p} & =\varepsilon_{n}^{n}+\Delta \gamma \operatorname{sign}\left(\xi_{n+1}\right), \\
\alpha_{n+1} & =\alpha_{n}+\Delta \gamma, \tag{10}\\
\eta_{n+1} & =\eta_{n}+\Delta \gamma K \operatorname{sign}\left(\xi_{n+1}\right), \\
f_{n+1} & =\left|\xi_{n+1}\right|-\left[\sigma_{Y}+H \alpha_{n+1}\right]=0,
\end{align*}
$$

where $\xi_{n+1}=\sigma_{n+1}-\eta_{n+1}$ is known as the relative stress.
a) Prove that the incremental plastic consistency parameter $\Delta \gamma>0$ can be expressed as ($\mathbf{1 0}$ point):

$$
\begin{equation*}
\Delta \gamma=\frac{f_{n+1}^{\text {trial }}}{E+(H+K)} . \tag{11}
\end{equation*}
$$

Exercise 6

$\max . \sum$ points: $\mathbf{2 0}$
obtained \sum points: \qquad

Scalar damage model

$$
\begin{array}{rll}
E & =100 & k N \\
\nu & =0.2 & \\
t & =0.1 \quad m \\
u_{2} & =1.0 \quad m
\end{array}
$$

Compute the response of the 2-D slab structure illustrated in the figure. The material behavior can be described by a scalar damage model. The elastic domain is approximated by the standard Hooke's law for a plane stress element. An exponential equation for the relation between the damage parameter and the internal variable

$$
\begin{equation*}
\omega=g(\kappa)=1-\frac{\kappa_{0}}{\kappa}\left[1-\alpha+\alpha e^{\beta\left(\kappa_{0}-\kappa\right)}\right] \tag{12}
\end{equation*}
$$

is investigated for the modeling of the post peak response, where $\alpha=1, \beta=10$ and $\kappa_{0}=0.2$ are assumed. With the definition of an equivalent strain measure

$$
\begin{equation*}
\tilde{\varepsilon}=\sqrt{\varepsilon^{T} \varepsilon} \tag{13}
\end{equation*}
$$

the model is completed.
a) Compute the approximated strains $\varepsilon=\left[\begin{array}{lll}\varepsilon_{11} & \varepsilon_{22} & 2 \varepsilon_{12}\end{array}\right]^{T}$ at point P using a rectangular bilinear Lagrange element. (8 point)
The B-operator is given by equation (14).
b) Compute the current damage parameter ω at point P . (6 point)
c) Compute the components $\boldsymbol{\sigma}=\left[\begin{array}{lll}\sigma_{11} & \sigma_{22} & \sigma_{12}\end{array}\right]^{T}$ of the stress tensor at point P. ($\mathbf{6}$ point)

B-operators:

$$
\begin{align*}
\mathbf{B}(\boldsymbol{\xi}) & =\left[\begin{array}{cccc|cc|cc}
\mathbf{B}_{1}(\boldsymbol{\xi}) & \mathbf{B}_{2}(\boldsymbol{\xi}) & \mathbf{B}_{3}(\boldsymbol{\xi}) & \mathbf{B}_{4}(\boldsymbol{\xi})
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc|cc|ccc}
-\frac{1-\xi_{2}}{b} & 0 & \frac{1-\xi_{2}}{b} & 0 & \frac{1+\xi_{2}}{b} & 0 & -\frac{1+\xi_{2}}{b} \\
0 & -\frac{1-\xi_{1}}{a} & 0 & -\frac{1+\xi_{1}}{a_{1}} & 0 & \frac{1+\xi_{1}}{a} & 0 \\
\frac{1-\xi_{1}}{a} \\
-\frac{1-\xi_{1}}{a} & -\frac{1-\xi_{2}}{b} & -\frac{1+\xi_{1}}{a} & \frac{1-\xi_{2}}{b} & \frac{1+\xi_{1}}{a} & \frac{1+\xi_{2}}{b} & \frac{1-\xi_{1}}{a}
\end{array}\right] \tag{14}
\end{align*}
$$

