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Galerkin Method

 Engineering problems: differential 

equations with boundary conditions.

Generally denoted as: D(U)=0; B(U)=0

 Our task: to find the function U which 

satisfies the given differential equations 

and boundary conditions.

 Reality: difficult, even impossible to solve 

the problem analytically



Galerkin Method

 In practical cases we often apply 

approximation.

 One of the approximation methods:

Galerkin Method, invented by Russian 

mathematician Boris Grigoryevich Galerkin.



Galerkin Method
Related knowledge

 Inner product of functions

 Basis of a vector space of functions



Galerkin Method 
Inner product

 Inner product of two functions in a certain 

domain:

shows the inner 

product of f(x) and g(x) on the interval [ a, 

b ].

*One important property: orthogonality

If             , f and g are orthogonal to each     

other;

**If for arbitrary w(x),               =0, f(x)    0
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Galerkin Method 
Basis of a space

 V: a function space

 Basis of V: a set of linear independent 

functions                     

Any function               could be uniquely 

written as the linear combination of the 

basis:
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Galerkin Method 
Weighted residual methods

 A weighted residual method uses a finite 

number of functions             . 

 The differential equation of the problem is 

D(U)=0 on the boundary B(U), for example:

on B[U]=[a,b].

where “L” is a differential operator and “f” 

is a given function. We have to solve the 

D.E. to obtain U.
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Galerkin method 
Weighted residual

 Step 1.

Introduce a “trial solution” of U:

to replace U(x) 

: finite number of basis functions

: unknown coefficients

* Residual is defined as:
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Galerkin Method
Weighted residual

 Step 2.

Choose “arbitrary” “weight functions” w(x), 
let:

With the concepts of “inner product” and 
“orthogonality”, we have: 

The inner product of the weight function 
and the residual is zero, which means that 
the trial function partially satisfies the 
problem.

So, our goal: to construct such u(x)
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Galerkin Method
Weighted residual

 Step 3.

Galerkin weighted residual method: 
choose weight function w from the basis 
functions     , then

These are a set of n-order linear 
equations. Solve it, obtain all of the 
coefficients    .

j

0

1

, [ ( )] ( ){ [ ( ) ( )]} 0
nb

j j j j
a

j

w R D u dx x D x c x dx   


     

jc



Galerkin Method

Weighted residual

 Step 4.

The “trial solution” 

is the approximation solution we want.
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Galerkin Method Example

 Solve the differential equation:

with the boundary condition:
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Galerkin Method Example

 Step 1.

Choose trial function: 

We make n=3, and
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Galerkin Method Example

 Step 2.

The “weight functions” are the same as 

the basis functions 

Step 3.

Substitute the trial function y(x) into
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Galerkin Method Example

 Step 4.

i=1,2,3; we have three equations with 

three unknown coefficients 1 2 3, ,c c c
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Galerkin Method Example

 Step 5.

Solve this linear equation set, get:

Obtain the approximation solution
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Galerkin Method Example

GalerkinGalerkin solutionsolution Analytic solutionAnalytic solution
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